
I

Student Minor Research Project

AUDIO COMPRESSION USING WAVELETS IN
MATLAB

Under RUSA 2.0 Scheme

(Through Ch.S.D.St.Theresa’s College for Women (Autonomous), Eluru, AP)

Submitted by
Ms K Jyothsna , III B.Sc. MPE (Reg.No.11704002)
Ms A J R Satya, III B.Sc. MECs (Reg.No.11705010)
Mr G D N Raju, III B.Sc. MECs (Reg.No.11705041)

Under the guidance of
Dr K Venkateswarlu

HOD of Electronics & Project Advisor

Department Of Electronics

 SRI Y N COLLEGE
(AUTONOMOUS)

Thrice Accredited by NAAC at ‘A’ Grade

Recognized by UGC as “College with Potential for Excellence”

Narsapur-534275, AP, India

December-2019

II

Department Of Electronics

SRI Y N COLLEGE
(AUTONOMOUS)

Thrice Accredited by NAAC at ‘A’ Grade

Recognized by UGC as “College with Potential for Excellence”

Narsapur-534275, AP, India

Certificate

 This is to certify that the project work entitled “Audio Compression using

Wavelets in MATLAB” is bonafied work carried out by Ms K Jyothsna (Reg.No:

11704002), Ms A J R Satya (Reg.No: 11705010), Mr G D N Raju (Reg.No:

11705041), submitted in Third Year of the degree B.Sc. in Electronics during the

year 2019-20 is an authentic work under my supervision and guidance.

To the best of my knowledge, the matter embodied in the project work has not

been submitted to any other College/Institute.

 Date: 29-12-2019 Dr K Venkateswarlu

 Project Advisor

 Department of Electronics

i

ACKNOWLEDGEMENT

 We place on record and warmly acknowledge the continuous

encouragement, invaluable supervision, timely suggestions and inspired

guidance offered by our Project advisor, Dr K Venkateswarlu, Head,

Department of Electronics, Sri Y N College (Autonomous), Narsapur in

bringing this report to a successful completion.

 We are grateful to Mr K Vinaya Phaneendhra, Lecturer, Department of

Electronics for permitting us to make use of the facilities available in the

department to carry out the project successfully. Last but not the least we

express our sincere thanks to all of our friends who have patiently extended

all sorts of help for accomplishing this undertaking.

 Finally we extend our gratefulness to one and all who are directly or

indirectly involved in the successful completion of this project work.

 Ms. K Jyothsna Ms. A J R Satya Mr. G D N Raju

 III.B.Sc.MPE III.B.Sc.MECs III.B.Sc.MECs

 Reg. No 11704002 Reg. No.11705010 Reg.No.11705041

ii

DECLARATION

 We, the undersigned, declare that the project entitled “Audio

Compression using Wavelets in MATLAB”, being submitted in Third Year

of Bachelor of Science in Electronics, Sri Y N College (Autonomous), is the

work carried out by us.

 Ms. K Jyothsna Ms. A J R Satya Mr. G D N Raju

 III.B.Sc.MPE III.B.Sc.MECs III.B.Sc.MECs

 Reg. No 11704002 Reg. No.11705010 Reg.No.11705041

iii

Contents Page No.

1. Abstract 01

2. Introduction 02

3. Wavelet representation for Audio Signals 09

 4. Wavelet Packet Approach 11

 5. Introduction to MATLAB 13

 6. Implementation Methodology 18

 7. MATLAB Code 25

 8. Results 44

 9. Conclusion 47

 10. Bibliography 48

iv

List of Figures & Tables Page No.

 Fig (2) an example that shows how the auditory properties

 can be used to compressan digital audio signal. 03

 Fig (3) Compression System Design 09

 Fig (4) Block diagram of the described encoder/decoder 11

 Fig (5) The graphical interface to the MATLAB workspace 16

Fig 6(a) Block Diagram of the Matlab Implementation 19

Fig 6(b) Tone masker detection in a frame-

 Matlab implementation. 30

Fig 8(a) Program output (Haar wavelet) 44

Fig 8(b) Graphical user interface for audio compression 45

Fig 8(c) Program output (Daubenches wavelet) 45

Fig 8(d) Original audio signal (size: 414.691kB) 46

Fig 8(e) Haar-wavelet-decomposed audio signal (size: 207.367kB) 46

Fig 8(e) Daubenches-wavelet-decomposed audio signal (size: 192.043kB) 46

1

1. ABSTRACT

 Audio frequencies range from 20Hz to 20kHz but these frequencies are not heard in the

same way. Frequencies below 20Hz and above 20kHz are very difficult to hear, while those

not much more than 20Hz, or not much less than 20kHz, cannot be heard by most people. We

often need to process these audio signals for various applications. MATLAB is one of the best

signal analysis and signal processing tools.

 The main objective of this project is to study the audio compressing techniques that use

wavelets. To simulate using MATLAB and obtain the compressed audio signal. Audio

compression is a very good example of speech and signal processing. We use the Internet for

various purposes including entertainment. Audio is common in all entertainment applications.

If an audio file size is large, it takes more space to store.

 Audio/video compression frees up space substantially, which can then be utilised for other

purposes.

.

2

2. INTRODUCTION

 Compression is process of converting an input data stream into another data stream that

has smaller size. Compression provides the reduction in redundancy also used to reduce

storage requirements overall program execution time may be reduced. This is because

reduction in storage will result in reduction of disc access attempts. The compression

algorithmhelp to reduce the bandwidth requirements and also provide a level of security for

the data being transmitted. The wavelets consist of banks of low pass filters, high pass filters

and down sampling units. Half of the filter convolution results are discarded because of the

down sampling at each wavelet decomposition stage. Only the approximation part of the

Daubechie wavelet results is kept so that the number of samples is reduced by half

Non linear frequency response of the hear:

 Humans are able to hear frequencies in the range approximately from 20 Hz to 20 kHz.

However, this does not mean that all frequencies are heard in the same way. One could make

the assumption that a human would hear frequencies that make up speech better than others,

and that is in fact a good guess. Furthermore, one could also hypothesize that hearing a tone

becomes more difficult close to the extremes frequencies (i.e. close to 20 Hz and 20kHz).

After many cochlear studies, scientists have found that the frequency range from 20 Hz to 20

kHz can be broken up into critical bandwidths, which are non-uniform, non-linear, and

dependent on the level of the incoming sound. Signals within one critical bandwidth are hard

to separate for a human observer. A detailed description of this behavior is described in the

Bark scale and Fletcher curves.

Masking property of the auditory system:

 Auditory masking is a perceptual property of the human auditory system that occurs

whenever the presence of a strong audio signal makes a temporal or spectral neighborhood of

weaker audio signal imperceptible. This means that the masking effect can be observed in

time and frequency domain. Normally they are studied separately and known as simultaneous

masking and temporal masking.

 If two sounds occur simultaneously and one is masked by the other, this is referred to as

simultaneous masking. A sound close in frequency to a louder sound is more easily masked

than if it is far apart in frequency. For this reason, simultaneous masking is also

3

sometimes called frequency masking. It is important to differentiate between tone and noise

maskers, because tonality of a sound also determines its ability to mask other sounds. A

sinusoidal masker, for example, requires a higher intensity to mask a noise- like masker than a

loud noise-like masker does to mask a sinusoid. Similarly, a weak sound emitted soon after

the end of a louder sound is masked by the louder sound. In fact, even a weak sound just

before a louder sound can be masked by the louder sound. These two effects are called

forward and backward temporal masking, respectively. Temporal masking effectiveness

attenuates exponentially from the onset and offset of the masker, with the onset attenuation

lasting approximately 10 ms and the offset attenuation lasting approximately 50 ms.

 It is of special interest for perceptual audio coding to have a precise description of all

masking phenomena to compute a masking threshold that can be used to compress a digital

signal. Using this, it is possible to reduce the SNR and therefore the number of bits. A

complete masking threshold should be calculated using the principles of simultaneous

masking and temporal masking and the frequency response of the ear. In the perceptual audio

coding schemes, these masking models are often called psychoacoustic models.

Fig (2) an example that shows how the auditory properties can be used to compress an

digital audio signal.

4

Audio compression:

 The idea of audio compression is to encode audio data to take up less storage space and

less bandwidth for transmission. To meet this goal different methods for compression have

been designed. Just like every other digital data compression, it is possible to classify them

into two categories: lossless compression and lossy compression.

Lossless compression:

 Lossless compression in audio is usually performed by waveform coding techniques.

These coders attempt to copy the actual shape of the analog signal, quantizing each sample

using different types of quantization. These techniques attempt to approximate the waveform,

and, if a large enough bit rate is available they get arbitrary close to it. A popular waveform

coding technique, that is considered uncompressed audio format, is the pulse code modulation

(PCM), which is used by the Compact Disc Digital Audio (or simply CD). The quality of CD

audio signals is referred to as a standard for hi-fidelity. CD audio signals are sampled at 44.1

kHz and quantized using 16 bits/sample Pulse Code Modulation (PCM) resulting in a very

high bit rate of 705 kbps.

 As mentioned before, human perception of sound is affected by SNR, because adding

noise to a signal is not as noticeable if the signal energy is large enough. When digitalize an

audio signal, ideally SNR could to be constant for al quantization levels, which requires a step

size proportional to the signal value. This kind of quantization can be done using a

logarithmic compander (compressor-expander). Using this technique it is possible to reduce

the dynamic range of the signal, thus increasing the coding efficiency, by using fewer bits.

The two most common standards are the µ-law and the A-law, widely used in telephony.

Other lossless techniques have been used to compress audio signals, mainly by finding

redundancy and removing it or by optimizing the quantization process. Among those

techniques it is possible to find Adaptative PCM and Differential quantization. Other lossless

techniques such as Huffman coding and LZW have been directly applied to audio

compression without obtaining significant compression ratio.

5

Lossy compression:

 Opposed to lossless compression, lossy compression reduces perceptual redundancy;

i.e. sounds which are considered perceptually irrelevant are coded with decreased accuracy or

not coded at all. In order to do this, it is better to have scalar frequency domains coders,

because the perceptual effects of masking can be more easily implemented in frequency

domain by using subband coding.

 Using the properties of the auditory system we can eliminate frequencies that cannot be

perceived by the human ear, i.e. frequencies that are too low or too high are eliminated, as

well as soft sounds that are drowned out by loud sounds. In order to determine what

information in an audio signal is perceptual irrelevant, most lossy compression algorithms use

transforms such as the Modified Discrete Cosine Transform (MDCT) to convert time domain

sampled waveforms into a frequency domain. Once transformed into the frequency domain,

frequencies component can be digitally allocated according to how audible they are (i.e. the

number of bits can be determined by the SNR). Audibility of spectral components is

determined by first calculating a masking threshold, below which it is estimated that sounds

will be beyond the limits of human perception (see 2.1 on this report).

 Briefly, the modified discrete cosine transform (MDCT) is a Fourier-related transform

with the additional property of being lapped. It is designed to be performed on consecutive

blocks of a larger data set, where subsequent blocks are overlapped so that the last half of one

block coincides with the first half of the next block. This overlapping, in addition to the

energy-compaction qualities of the DCT, makes the MDCT especially attractive for signal

compression applications, since it helps to avoid artifacts stemming from the block

boundaries.

MPEG Audio coding standards:

 Moving Pictures Experts Group (MPEG) is an ISO/IEC group charged with the

development of video and audio encoding standards. MPEG audio standards include an

elaborate description of perceptual coding, psychoacoustic modeling and implementation

issues. It is interesting for our report to mention some brief comments

6

on these audio coders, because some of the features of the wavelet-based audio coders are

based in those models.

(a) MP1 (MPEG audio layer-1): Simplest coder/decoder. It identifies local tonal

components based on local peaks of the audio spectrum.

(b) MP2 (MPEG audio layer-2): It has an intermediate complexity. It uses data from the

previous two windows to predict, via linear interpolation, the component of the

current window. This is based on the fact that tonal components, being more

predictable, have higher tonality indices.

(c) MP3 (MPEG audio layer-3). Higher level of complexity. Not only includes masking in

time domain but also a more elaborated psychoacoustic model, MDCT decomposition,

dynamic allocation and Huffman coding.

 All three layers of MPEG-1 use a polyphase fiterbank for signal decomposition into 32

equal width subbands. This is a computational simple solution and provides reasonable time-

frequency resolution. However it is known that this approach has three notable deficiencies:

• Equal subbands do not reflect the critical bands of noise masking, and then the

quantization error cannot be tuned properly.

• Those filter banks and their inverses do not yield perfect reconstruction, introducing error

even in the absence of quantization error.

• Adjacent filter banks overlap, then a single tone can affect two filter banks.

These problems have been fixed by a new format which is considered the successor of the

MP3 format: AAC (Advanced Audio Coding) defined in MPEG-4 Part 3 (with an

extension .m4a or namely MP4 audio).

(d) M4A: AAC (MPEG-4 Audio): Similar to MP3 but it increases the number of subbands

up to 48 and fix some issues in the previous perceptual model. It has higher coding

efficiency for stationary and transient signals, providing a better and more stable

quality than MP3 at equivalent or slightly lower bitrates.

7

Speech compression:

 Speech signals has unique properties that differ from a general audio/music signals. First,

speech is a signal that is more structured and band-limited around 4kHz. These two facts can

be exploited through different models and approaches and at the end, make it easier to

compress. Many speech compression techniques have been efficiently applied. Today,

applications of speech compression (and coding) involve real time processing in mobile

satellite communications, cellular telephony, internet telephony, audio for videophones or

video teleconferencing systems, among others. Other applications include also storage and

synthesis systems used, for example, in voice mail systems, voice memo wristwatches, voice

logging recorders and interactive PC software.

 Basically speech coders can be classified into two categories: waveform coders and

analysis by synthesis vocoders. The first was explained before and are not very used for

speech compression, because they do not provide considerable low bit rates. They are mostly

focused to broadband audio signals. On the other hand, vocoders use an entirely different

approach to speech coding, known as parametric coding, or analysis by synthesis coding

where no attempt is made at reproducing the exact speech waveform at the receiver, but to

create perceptually equivalent to the signal. These systems provide much lower data rates by

using a functional model of the human speaking mechanism at the receiver. Among those,

perhaps one of the most popular techniques is called Linear Predictive Coding (LPC) vocoder.

Some higher quality vocoders include RELP (Residual Excited Linear Prediction) and CELP

(Code Excited Linear Prediction). There are also lower quality vocoders that give very low bit

rate such as Mixed Excitation vocoder, Harmonic coding vocoder and Waveform

interpolation coders.

Evaluating compressed audio:

 When evaluating the quality of compressed audio it is also convenient to differentiate

between speech signals and general audio/music signals. Even though speech signals have

more detailed methods to evaluate the quality of a compressed signal (like intelligibility tests),

both audio/music and speech share one of the most common methods: acceptability tests.

These tests are the most general way to evaluate the quality of an audio/speech signal, and

they are mainly determined by asking users their preferences for different utterances. Among

those tests, Mean Opinion Score (MOS) test is the most used one. It is a subjective

measurement that is derived entirely by people listening to the signals and scoring the results

8

from 1 to 5, with a 5 meaning that speech quality is perfect or “transparent”. The test

procedure requires carefully prepared and controlled test conditions. The term “transparent

quality” means that most of the test samples are indistinguishable from the original for most

of the listeners. The term was defined by the European Broadcasting Union (EBU) in 1991

and statistically implemented in formal listening tests since then.

 Finally, it is necessary to emphasize that the fact that measures of quality of audio signal

does not have an objective measure that we can extract directly from the signal (such mean

square error), make it more difficult to evaluate it. This is because subjective evaluations

require a large number of test samples and special conditions during the evaluation.

Different Compression Techniques

Different types of compression techniques are available they are lossless

compression and lossy compression techniques. Redundancy information present in audio

signal will removed in loss less compression. It is disadvantages such as it doesn’t give the

constant output data rate and very small compression ratio, and advantage isit can be applied

To any data stream. In loss compression the information is irrelevant in that the

receiver will not able to recognize the missing.

Wavelet Transforms:

The wavelet theory allows a very general and flexible description to transform signal

from time domain to time-frequency domain, so called time-scale domain. Wavelet

transform uses short window for high. Wavelet Transform uses short window for high

frequencies, leading to a good time resolution and larger windows for low frequencies

leading to a good frequency resolution.

9

3. WAVELET REPRESENTATION FOR

AUDIO SIGNALS

 Wavelet compression is a form of data compression well suited for audio

compression, video compression,image compression. Wavelet compression methods are

adequate for representing transients. Such as percussion sounds in audio, high-frequency

components in 2-D images. This means transient elements of data signal can be represented by

a smaller amount of information that would be the case of some, Reverse Biorthogonal Filters,

Discrete Meyer, Harr.

Wavelet Representation For Audio Signal:

A wavelet transform can be defined as a “small wave” that has its energy

concentrated in time, and it provides a tool for the analysis of transient, non-stationary or

time varying phenomenon. It has oscillating wave like property. Wavelet is a waveform of

limited duration having an average value zero. They are localized in space. Wavelet

transform provides a time-frequency representation of the signal. In wavelet transform, the

signal is decomposed into set of basic functions also known as WAVELETS. Wavelets with

large number of vanishing moments are useful for this audio compression method, because if

a wavelet with a large number of vanishing moments is used, a precise specification of the

pass bands of each sub band in the wavelet

decomposition is possible. Thus, we can approximate the critical band division given by the

auditory system with this structure and quantization noise power could be integrated.

Wavelet Based Compression Techniques:

Wavelets concentrate speech signals into a few neighbouring coefficients. By taking

the wavelet transform of a signal, many of its‟ coefficients will either be zero or have

negligible magnitudes. Data compression can then be done by treating the small valued

coefficients as insignificant data and discarding them. Compressing a speech signal using

wavelets involves the following stages.

Fig (3): Compression System Design

10

a) Thresholding:

After the coefficients are received from different transforms, thresholding is done.

Very few DCT coefficients represent 99% of signal energy; hence thresholding is calculated

and applied to the coefficients. Coefficients having values less than threshold values are

removed.

b) Quantization:

It is a process of mapping a set of continuous valued data to a set of discrete valued

data. The aim of quantization is to reduce the information found in threshold coefficients.

This process makes sure that it produces minimum errors. We basically perform uniform

quantization process.

c) Encoding:

We use different encoding techniques like decomposition using N equal frames

Encoding method is used to remove data that are repetitively occurring. In encoding we can

also reduce the number of coefficients by removing the redundant data. Encoding can use

any of the two compression techniques, lossless or lossy. This helps in reducing the

bandwidth of the signal hence compression can be achieved.The compressed speech signal

can be reconstructed to form the original signal by DECODING followed by DE-

QUANTIZATION. This would reproduce the original signal.

11

4. WAVELET PACKET APPROACH

 The main goal of this new algorithm is to compress high quality audio maintaining

transparent quality at low bit rates. In order to do this, the authors explored the usage of an

adaptative wavelet packet decomposition. Several key issues are considered as follows:

• Design a subband structure for wavelet representation of audio signals. This design also

determines the computational complexity of the algorithm for each frame;

• Design a scheme for efficient bit allocation, which depends on the temporal resolution

of the decomposition

Fig (4) Block diagram of the described encoder/decoder

12

Wavelet packet representation:

 Given a wavelet packet structure, a complete tree structured filter bank is considered. Once

we find the “best basis” for this application, a fast implementation exists for determining the

coefficients with respect to the basis. However, in the “best basis” approach, they do not

subdivide every subband until the last level. The decision of whether to subdivide is made

based on a reasonable criterion according to the application (further decomposition implies

less temporal resolution).

 The cost function, which determines the basis selection algorithm, will be a constrained

minimization problem. The idea is to minimize the cost due to the bit rate given the filter bank

structure, using as a variable the estimated computational complexity at a particular step of

the algorithm, limited by the maximum computations permitted. At every stage, a decision is

made whether to decompose the subband further based on this cost function.

 Another factor that influences this decomposition is the tradeoff in resolution. If it is

decomposed further down, it will sacrifice temporal resolution for frequency resolution. The

last level of decomposition has minimum temporal resolution and has the best frequency

resolution. The decision on whether to decompose is carried out top-down instead of bottom-

up. Following that way, it is possible to evaluate the signal at a better temporal resolution

before the decision to decompose. It is proved in this paper that the proposed algorithm yields

the “best basis” (minimum cost) for the given computational complexity and range of

temporal resolution.

13

5. INTRODUCTION TO MATLAB

What Is MATLAB?

 MATLAB is a high-performance language for technical computing. It integrates

computation, visualization, and programming in an easy-to-use environment where problems

and solutions are expressed in familiar mathematical notation. Typical uses include:

 Math and computation

 Algorithm development

 Modeling, simulation, and prototyping

 Data analysis, exploration, and visualization

 Scientific and engineering graphics

 Application development, including Graphical User Interface building

 MATLAB is an interactive system whose basic data element is an array that does not

require dimensioning. This allows you to solve many technical computing problems,

especially those with matrix and vector formulations, in a fraction of the time it would take to

write a program in a scalar noninteractive language such as C or Fortran.

 The name MATLAB stands for matrix laboratory. MATLAB was originally written to

provide easy access to matrix software developed by the LINPACK and EISPACK projects,

which together represent the state-of-the-art in software for matrix computation.

 MATLAB has evolved over a period of years with input from many users. In university

environments, it is the standard instructional tool for introductory and advanced courses in

mathematics, engineering, and science. In industry, MATLAB is the tool of choice for high-

productivity research, development, and analysis.

 MATLAB features a family of application-specific solutions called toolboxes. Very

important to most users of MATLAB, toolboxes allow you to learn and apply specialized

technology. Toolboxes are comprehensive collections of MATLAB functions (M-files) that

extend the MATLAB environment to solve particular classes of problems. Areas in which

toolboxes are available include signal processing, control systems, neural networks, fuzzy

logic, wavelets, simulation, and many others.

14

The MATLAB System

The MATLAB system consists of five main parts:

The MATLAB language.

This is a high-level matrix/array language with control flow statements, functions, data

structures, input/output, and object-oriented programming features. It allows both

"programming in the small" to rapidly create quick and dirty throw-away programs, and

"programming in the large" to create complete large and complex application programs.

The MATLAB working environment.

This is the set of tools and facilities that you work with as the MATLAB user or programmer.

It includes facilities for managing the variables in your workspace and importing and

exporting data. It also includes tools for developing, managing, debugging, and profiling M-

files, MATLAB's applications.

Handle Graphics.

This is the MATLAB graphics system. It includes high-level commands for two-dimensional

and three-dimensional data visualization, image processing, animation, and presentation

graphics. It also includes low-level commands that allow you to fully customize the

appearance of graphics as well as to build complete Graphical User Interfaces on your

MATLAB applications.

The MATLAB mathematical function library.

This is a vast collection of computational algorithms ranging from elementary functions like

sum, sine, cosine, and complex arithmetic, to more sophisticated functions like matrix inverse,

matrix eigenvalues, Bessel functions, and fast Fourier transforms.

The MATLAB Application Program Interface (API).

This is a library that allows you to write C and Fortran programs that interact with MATLAB.

It include facilities for calling routines from MATLAB (dynamic linking), calling MATLAB

as a computational engine, and for reading and writing MAT-files.

 A minimum MATLAB session:

15

The goal of this minimum session (also called starting and exiting sessions) is to learn the first

steps:

• How to log on

• Invoke MATLAB

• Do a few simple calculations

• How to quit MATLAB

 Starting MATLAB:

After logging into your account, you can enter MATLAB by double-clicking on the MATLAB

shortcut icon (MATLAB 7.0.4) on your Windows desktop. When you start MATLAB, a

special window called the MATLAB desktop appears. The desktop is a window that contains

other windows. The major tools within or accessible from the desktop are:

• The COMMAND WINDOw

• The COMMAND HISTORy

• The WORKSPace

• The CURRENT DIRECTORy

• The HELP BroWSER

• The START button

16

Fig (5)The graphical interface to the MATLAB workspace

When MATLAB is started for the first time, the screen looks like the one that shown in

the Figure 1.1. This illustration also shows the default configuration of the MATLAB desktop.

You can customize the arrangement of tools and documents to suit your needs.

Now, we are interested in doing some simple calculations. We will assume that you

have sufficient understanding of your computer under which MATLAB is being run.

You are now faced with the MATLAB desktop on your computer, which contains the prompt

(>>) in the Command Window. Usually, there are 2 types of prompt:

>> for full version

EDU> for educational version

17

−→

NOTE: To simplify the notation, we will use this prompt, >>, as a standard prompt sign,
though our MATLAB version is for educational purpose.

 Quitting MATLAB

 To end your MATLAB session, type quit in the Command Window, or select File Exit

MATLAB in the desktop main menu.

18

6. IMPLEMENTATION METHODOLGY

 An audio signal sample is taken and analysed using MATLAB for frequency and

amplitude. Haar and Daubenches algorithms are applied on the speech signal and the audio is

compressed. Audio sizes before and after compression are compared.

 The following parameters are compared by the program: Peak signal-to-noise ratio

(PSNR), normalised root-mean-square error (NRMSE) and compression ratios.

Haar wavelet algorithm performs the following functions:

1. Selects audio and finds actual signal size

2. Finds amplitude and frequency

3. Creates frame

4. Decomposes the signal spectrum into wavelet

5. Creates psychoacoustic model

6. Inspects the spectrum and finds tones maskers

7. Applies mu-law of compression

8. Finds and corrects offset

9. Rewrites wave

10. Finds the size of compressed signal

Daubenches wavelet transform performs the following functions:

1. Selects audio and finds the actual signal size

2. Finds amplitude and frequency

3. Chooses a block size

4. Changes compression percentages

5. Initialises compressed matrix

6. Does compression using inverse discrete cosine transform (IDCT)

7. Rewrites signal

8. Finds the size of compressed signal

 MATLAB code file Audio Compression.m implements Haar wavelet and Audio

Compression2.m file implements Daubenches wavelet. In this example, Windows XP

Startup.wav is the sample audio file used for compression.

 Comparison of performance metrics such as PSNR, MSE and compression ratio shows that

Daubenches algorithm is best suited for lossless compression of speech signals. Advantages

of audio compression are less storage space and associated cost, and faster data transfer.

19

 There are several techniques for data compression. You should follow lossless

compression technique as lossy audio compression results in data loss. Image and video can

be compressed in a similar way.

Main features of the implementation

The Matlab implementation includes the following features:

(a) Signal division and processing using small frames

(b) Discrete wavelet decomposition of each frame

(c) Compression in the wavelet domain

(d) A psychoacoustic model

(e) Non linear quantization over the wavelet coefficient using the psychoacoustic model

(f) Signal reconstruction

(g) Main output: Audio files

 Fig 6(a).Block Diagram of the Matlab Implementation

20

Considerations:

 Even though it is more convenient to implement the ideas, some of the suggested steps

require a complicated implementation. Therefore, a few modifications and considerations

have been included to the design of this MATLAB simulation:

(a) No search for optimal basis is performed:

 Even though this is one of the key point, its implementation is requires a large

programming design, and that is out of the scope of this demonstration. To compensate that,

another compression technique has been used. This is based in the known discrete wavelet

decomposition compression that uses an optimal global threshold. This technique has been

successfully used in audio compression.the best results were observed when using a

Daubechies wavelet with 10 vanishing moments (dB10 in matlab) and 5 levels of

decomposition. These choices will overcome the lack of an optimal basis search.

(b) Non overlapping frames are included

 This implementation does not have overlapping frames to avoid computational

complexity. The frame size is given 2048 samples per frame.

(c) The psychoacoustic model is simplified

 Due to the complexity associated with the construction of a psychoacoustic model, a

simplified version was considered. This model can only detect masking tones in the signal,

and gives a general threshold for all the frequencies

An example of this simplified psychoacoustic model is shown in the following figure. The

main tonal components are detected. The power average of this components is used as

masking threshold for every frequency.

(d) No new audio format was design

 Even though this simplified matlab implementation performs compression over the audio

signal, this is not reflected in the size of the new audio files. This is due to the fact that a new

format design was not considered, so the wavwrite command was used to create the audio

files (.wav). The compression ratio for each case is calculated using other variables of the

simulation.

30

30

Fig 6(b) Tone masker detection in a frame - Matlab implementation.

(e) A lossless compression at the end was tested and suppressed:

 Arithmetic compression (similar to Huffman coding) was tested in this simulation but was

suppressed at the end because it made the simulation too slow. However its performance is

considered in the results.

Equations:

Peak Signal to Noise Ratio PSNR = 10 log10
𝑁𝑋2

‖𝑥−𝑟‖2

N is the length of the reconstructed signal, X is the maximum absolute square value of the

Signal x and ‖𝑥 − 𝑟‖2 is the energy of the difference between the original and reconstructed

Signals.

2. Mean Square Error MSE = √
{𝑥(𝑛)−𝑟(𝑛)}2

{𝑥(𝑛)−µ𝐴(𝑛)}2

x (n) is the speech signal, r(n) is the reconstructed signal, and µx(n) is the mean of the speech

Signal.

3. Compression Ratio C =
𝐿𝑒𝑛𝑔𝑡ℎ(𝑥(𝑛))

𝐿𝑒𝑛𝑔𝑡ℎ(𝑐𝑊𝑐)

cWC is the length of the compressed wavelet transform vector.

31

31

4. HAAR Wavelet Algorithm

For a given signal x, the output of the µ-law compressor is,

y =
𝑉 log (1+ µ |𝑥| / 𝑉)

log (1 + µ)
sgn(x)

Where V is the maximum value of signal xµ is the µ-law parameter.

32

32

7. MATLAB CODE
AudioCompression.m
function varargout = AudioCompression1(varargin)

% AUDIOCOMPRESSION MATLAB code for AudioCompression.fig

% AUDIOCOMPRESSION, by itself, creates a new AUDIOCOMPRESSION or

raises the existing

% singleton*.

%

% H = AUDIOCOMPRESSION returns the handle to a new AUDIOCOMPRESSION

or the handle to

% the existing singleton*.

%

% AUDIOCOMPRESSION('CALLBACK',hObject,eventData,handles,...) calls

the local

% function named CALLBACK in AUDIOCOMPRESSION.M with the given input

arguments.

%

% AUDIOCOMPRESSION('Property','Value',...) creates a new

AUDIOCOMPRESSION or raises the

% existing singleton*. Starting from the left, property value pairs

are

% applied to the GUI before AudioCompression_OpeningFcn gets called.

An

% unrecognized property name or invalid value makes property

application

% stop. All inputs are passed to AudioCompression_OpeningFcn via

varargin.

%

% *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only

one

% instance to run (singleton)".

%

% See also: GUIDE, GUIDATA, GUIHANDLES

% Edit the above text to modify the response to help AudioCompression

% Last Modified by GUIDE v2.5 21-Nov-2014 17:35:02

% Begin initialization code - DO NOT EDIT

gui_Singleton = 1;

gui_State = struct('gui_Name', mfilename, ...

 'gui_Singleton', gui_Singleton, ...

 'gui_OpeningFcn', @AudioCompression_OpeningFcn, ...

 'gui_OutputFcn', @AudioCompression_OutputFcn, ...

 'gui_LayoutFcn', [] , ...

 'gui_Callback', []);

if nargin && ischar(varargin{1})

 gui_State.gui_Callback = str2func(varargin{1});

end

if nargout

 [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});

33

33

else

 gui_mainfcn(gui_State, varargin{:});

end

% End initialization code - DO NOT EDIT

% --- Executes just before AudioCompression is made visible.

function AudioCompression_OpeningFcn(hObject, eventdata, handles,

varargin)

% This function has no output args, see OutputFcn.

% hObject handle to figure

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% varargin command line arguments to AudioCompression (see VARARGIN)

% Choose default command line output for AudioCompression

handles.output = hObject;

% Update handles structure

guidata(hObject, handles);

% UIWAIT makes AudioCompression wait for user response (see UIRESUME)

% uiwait(handles.figure1);

% --- Outputs from this function are returned to the command line.

function varargout = AudioCompression_OutputFcn(hObject, eventdata,

handles)

% varargout cell array for returning output args (see VARARGOUT);

% hObject handle to figure

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Get default command line output from handles structure

varargout{1} = handles.output;

% --- Executes on button press in pushbutton1.

function pushbutton1_Callback(hObject, eventdata, handles)

% hObject handle to pushbutton1 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

global file_name;

%guidata(hObject,handles)

file_name=uigetfile({'*.wav'},'Select an Audio File');

fileinfo = dir(file_name);

SIZE = fileinfo.bytes;

Size = SIZE/1024;

[x,Fs,bits] = wavread(file_name);

xlen=length(x);

t=0:1/Fs:(length(x)-1)/Fs;

set(handles.text2,'string',Size);

%plot(t,x);

34

34

axes(handles.axes3) % Select the proper axes

plot(t,x)

set(handles.axes3,'XMinorTick','on')

grid on

% --- Executes on button press in pushbutton2.

function pushbutton2_Callback(hObject, eventdata, handles)

% hObject handle to pushbutton2 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

global file_name;

if(~ischar(file_name))

 errordlg('Please select Audio first');

else

[x,Fs,bits] = wavread(file_name);

xlen=length(x);

t=0:1/Fs:(length(x)-1)/Fs;

wavelet='haar';

level=5;

frame_size=2048;

psychoacoustic='on '; %if it is off it uses 8 bits/frame as default

wavelet_compression = 'on ';

heavy_compression='off';

compander='on ';

quantization ='on ';

% ENCODER

step=frame_size;

N=ceil(xlen/step);

%computational variables

Cchunks=0;

Lchunks=0;

Csize=0;

PERF0mean=0;

PERFL2mean=0;

n_avg=0;

n_max=0;

n_0=0;

n_vector=[];

for i=1:1:N

if (i==N);

frame=x([(step*(i-1)+1):length(x)]);

else

frame=x([(step*(i-1)+1):step*i]);

end

%wavelet decomposition of the frame

[C,L] = wavedec(frame,level,wavelet);

%wavelet compression scheme

if wavelet_compression=='on '

[thr,sorh,keepapp] = ddencmp('cmp','wv',frame);

if heavy_compression == 'on '

thr=thr*10^6;

35

35

end

[XC,CXC,LXC,PERF0,PERFL2] = wdencmp('gbl',C, L,

wavelet,level,thr,sorh,keepapp);

C=CXC;

L=LXC;

PERF0mean=PERF0mean + PERF0;

PERFL2mean=PERFL2mean+PERFL2;

end

%Psychoacoustic model

if psychoacoustic=='on '

P=10.*log10((abs(fft(frame,length(frame)))).^2);

Ptm=zeros(1,length(P));

%Inspect spectrum and find tones maskers

for k=1:1:length(P)

if ((k<=1) | (k>=250))

bool = 0;

elseif ((P(k)<P(k-1)) | (P(k)<P(k+1))),

bool = 0;

elseif ((k>2) & (k<63)),

bool = ((P(k)>(P(k-2)+7)) & (P(k)>(P(k+2)+7)));

elseif ((k>=63) & (k<127)),

bool = ((P(k)>(P(k-2)+7)) & (P(k)>(P(k+2)+7)) & (P(k)>(P(k-3)+7)) &

(P(k)>(P(k+3)+7)));

elseif ((k>=127) & (k<=256)),

bool = ((P(k)>(P(k-2)+7)) & (P(k)>(P(k+2)+7)) & (P(k)>(P(k-3)+7)) &

(P(k)>(P(k+3)+7)) & (P(k)>(P(k-4)+7)) & (P(k)>(P(k+4)+7)) &(P(k)>(P(k-

5)+7)) & (P(k)>(P(k+5)+7)) & (P(k)>(P(k-6)+7)) &(P(k)>(P(k+6)+7)));

else

bool = 0;

end

if bool==1

Ptm(k)=10*log10(10.^(0.1.*(P(k-1)))+10.^(0.1.*(P(k)))+10.^(0.1.*P(k+1)));

end

end

sum_energy=0;

for k=1:1:length(Ptm)

sum_energy=10.^(0.1.*(Ptm(k)))+sum_energy;

end

E=10*log10(sum_energy/(length(Ptm)));

SNR=max(P)-E;

n=ceil(SNR/6.02);

if n<=3

n=4;

n_0=n_0+1;

end

if n>=n_max

n_max=n;

end

n_avg=n+n_avg;

n_vector=[n_vector n];

end

%Compander(compressor)

if compander=='on '

36

36

Mu=255;

C = compand(C,Mu,max(C),'mu/compressor');

end

%Quantization

if quantization=='on '

if psychoacoustic=='off'

n=8;

end

partition = [min(C):((max(C)-min(C))/2^n):max(C)];

codebook = [1 min(C):((max(C)-min(C))/2^n):max(C)];

[index,quant,distor] = quantiz(C,partition,codebook);

%find and correct offset

offset=0;

for j=1:1:N

if C(j)==0

offset=-quant(j);

break;

end

end

quant=quant+offset;

C=quant;

end

%Put together all the chunks

Cchunks=[Cchunks C];

Lchunks=[Lchunks L];

Csize=[Csize length(C)];

Encoder = round((i/N)*100); %indicator of progess

end

Cchunks=Cchunks(2:length(Cchunks));

%wavwrite(Cchunks,Fs,bits,'output1.wav')

Csize=[Csize(2) Csize(N+1)];

Lsize=length(L);

Lchunks=[Lchunks(2:Lsize+1) Lchunks((N-1)*Lsize+1:length(Lchunks))];

PERF0mean=PERF0mean/N; %indicator

PERFL2mean=PERFL2mean/N;%indicator

n_avg=n_avg/N;%indicator

n_max;%indicator

end_of_encoder='done';

xdchunks=0;

for i=1:1:N;

if i==N;

Cframe=Cchunks([((Csize(1)*(i-1))+1):Csize(2)+(Csize(1)*(i-1))]);

%Compander (expander)

if compander=='on '

if max(Cframe)==0

else

Cframe = compand(Cframe,Mu,max(Cframe),'mu/expander');

end

end

xd = waverec(Cframe,Lchunks(Lsize+2:length(Lchunks)),wavelet);

else

Cframe=Cchunks([((Csize(1)*(i-1))+1):Csize(1)*i]);

%Compander (expander)

37

37

if compander=='on '

if max(Cframe)==0

else

Cframe = compand(Cframe,Mu,max(Cframe),'mu/expander');

end

end

xd = waverec(Cframe,Lchunks(1:Lsize),wavelet);

end

xdchunks=[xdchunks xd];

Decoder = round((i/N)*100); %indicator of progess

end

xdchunks=xdchunks(2:length(xdchunks));

%distorsion = sum((xdchunks-x').^2)/length(x)

end_of_decoder='done';

%creating audio files with compressed schemes

wavwrite(xdchunks,Fs,bits,'output1.wav');

end_of_writing_file='done';%indicator of progess;

[x,Fs,bits] = wavread('output1.wav');

fileinfo = dir('output1.wav');

SIZE = fileinfo.bytes;

Size = SIZE/1024;

set(handles.text3,'string',Size)

xlen=length(x);

t=0:1/Fs:(length(x)-1)/Fs;

axes(handles.axes4) % Select the proper axes

plot(t,xdchunks)

set(handles.axes4,'XMinorTick','on')

grid on

[y1,fs1, nbits1,opts1]=wavread(file_name);

[y2,fs2, nbits2,opts2]=wavread('output1.wav');

[c1x,c1y]=size(y1);

[c2x,c2y]=size(y1);

if c1x ~= c2x

 disp('dimeonsions do not agree');

 else

 R=c1x;

 C=c1y;

 err = (sum(y1(2)-y2).^2)/(R*C);

 MSE=sqrt(err);

 MAXVAL=255;

 PSNR = 20*log10(MAXVAL/MSE);

 MSE= num2str(MSE);

 if(MSE > 0)

 PSNR= num2str(PSNR);

 else

PSNR = 99;

end

fileinfo = dir(file_name);

SIZE = fileinfo.bytes;

Size = SIZE/1024;

fileinfo1 = dir('output1.wav');

SIZE1 = fileinfo1.bytes;

38

38

Size1 = SIZE1/1024;

CompressionRatio = Size/Size1;

 set(handles.text14,'string',PSNR)

 set(handles.text16,'string',MSE)

 set(handles.text17,'string',CompressionRatio)

end

end

function edit2_Callback(hObject, eventdata, handles)

% hObject handle to edit2 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of edit2 as text

% str2double(get(hObject,'String')) returns contents of edit2 as a

double

% --- Executes during object creation, after setting all properties.

function edit2_CreateFcn(hObject, eventdata, handles)

% hObject handle to edit2 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.

% See ISPC and COMPUTER.

if ispc && isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))

 set(hObject,'BackgroundColor','white');

end

function edit1_Callback(hObject, eventdata, handles)

% hObject handle to edit1 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of edit1 as text

% str2double(get(hObject,'String')) returns contents of edit1 as a

double

% --- Executes during object creation, after setting all properties.

function edit1_CreateFcn(hObject, eventdata, handles)

% hObject handle to edit1 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

39

39

% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.

% See ISPC and COMPUTER.

if ispc && isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))

 set(hObject,'BackgroundColor','white');

end

AudioCompression2.m
function varargout = AudioCompression2(varargin)

% AUDIOCOMPRESSION2 MATLAB code for AudioCompression2.fig

% AUDIOCOMPRESSION2, by itself, creates a new AUDIOCOMPRESSION2 or

raises the existing

% singleton*.

%

% H = AUDIOCOMPRESSION2 returns the handle to a new AUDIOCOMPRESSION2

or the handle to

% the existing singleton*.

%

% AUDIOCOMPRESSION2('CALLBACK',hObject,eventData,handles,...) calls

the local

% function named CALLBACK in AUDIOCOMPRESSION2.M with the given input

arguments.

%

% AUDIOCOMPRESSION2('Property','Value',...) creates a new

AUDIOCOMPRESSION2 or raises the

% existing singleton*. Starting from the left, property value pairs

are

% applied to the GUI before AudioCompression2_OpeningFcn gets called.

An

% unrecognized property name or invalid value makes property

application

% stop. All inputs are passed to AudioCompression2_OpeningFcn via

varargin.

%

% *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only

one

% instance to run (singleton)".

%

% See also: GUIDE, GUIDATA, GUIHANDLES

% Edit the above text to modify the response to help AudioCompression2

% Last Modified by GUIDE v2.5 21-Nov-2014 18:23:56

% Begin initialization code - DO NOT EDIT

gui_Singleton = 1;

gui_State = struct('gui_Name', mfilename, ...

 'gui_Singleton', gui_Singleton, ...

 'gui_OpeningFcn', @AudioCompression2_OpeningFcn, ...

 'gui_OutputFcn', @AudioCompression2_OutputFcn, ...

40

40

 'gui_LayoutFcn', [] , ...

 'gui_Callback', []);

if nargin && ischar(varargin{1})

 gui_State.gui_Callback = str2func(varargin{1});

end

if nargout

 [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});

else

 gui_mainfcn(gui_State, varargin{:});

end

% End initialization code - DO NOT EDIT

% --- Executes just before AudioCompression2 is made visible.

function AudioCompression2_OpeningFcn(hObject, eventdata, handles,

varargin)

% This function has no output args, see OutputFcn.

% hObject handle to figure

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% varargin command line arguments to AudioCompression2 (see VARARGIN)

% Choose default command line output for AudioCompression2

handles.output = hObject;

% Update handles structure

guidata(hObject, handles);

% UIWAIT makes AudioCompression2 wait for user response (see UIRESUME)

% uiwait(handles.figure1);

% --- Outputs from this function are returned to the command line.

function varargout = AudioCompression2_OutputFcn(hObject, eventdata,

handles)

% varargout cell array for returning output args (see VARARGOUT);

% hObject handle to figure

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Get default command line output from handles structure

varargout{1} = handles.output;

% --- Executes on button press in pushbutton2.

function pushbutton2_Callback(hObject, eventdata, handles)

% hObject handle to pushbutton2 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

global file_name;

%guidata(hObject,handles)

file_name=uigetfile({'*.wav'},'Select an Audio File');

41

41

fileinfo = dir(file_name);

SIZE = fileinfo.bytes;

Size = SIZE/1024;

[x,Fs,bits] = wavread(file_name);

xlen=length(x);

t=0:1/Fs:(length(x)-1)/Fs;

set(handles.text12,'string',Size);

%plot(t,x);

axes(handles.axes1) % Select the proper axes

plot(t,x)

set(handles.axes1,'XMinorTick','on')

grid on

% --- Executes on button press in pushbutton3.

function pushbutton3_Callback(hObject, eventdata, handles)

% hObject handle to pushbutton3 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

global file_name;

if(~ischar(file_name))

 errordlg('Please select Audio first');

else

[Data,Fs,bits] = wavread(file_name);

[Data, Fs, bits] = wavread('Windows XP Startup.wav');

%chosing a block size

windowSize = 8192;

%changing compression percentages

samplesHalf = windowSize / 2;

samplesQuarter = windowSize / 4;

samplesEighth = windowSize / 8;

%initializing compressed matrice

DataCompressed2 = [];

DataCompressed4 = [];

DataCompressed8 = [];

%actual compression

for i=1:windowSize:length(Data)-windowSize

 windowDCT = dct(Data(i:i+windowSize-1));

 DataCompressed2(i:i+windowSize-1) = idct(windowDCT(1:samplesHalf),

windowSize);

 DataCompressed4(i:i+windowSize-1) = idct(windowDCT(1:samplesQuarter),

windowSize);

 DataCompressed8(i:i+windowSize-1) = idct(windowDCT(1:samplesEighth),

windowSize);

end

wavwrite(DataCompressed2,Fs,bits,'output3.wav')

[x,Fs,bits] = wavread('output3.wav');

fileinfo = dir('output3.wav');

SIZE = fileinfo.bytes;

42

42

Size = SIZE/1024;

xlen=length(x);

t=0:1/Fs:(length(x)-1)/Fs;

set(handles.text14,'string',Size);

%plot(t,x);

axes(handles.axes2) % Select the proper axes

plot(t,x)

set(handles.axes2,'XMinorTick','on')

grid on

wavwrite(DataCompressed4,Fs,bits,'output4.wav')

[x,Fs,bits] = wavread('output4.wav');

fileinfo = dir('output4.wav');

SIZE = fileinfo.bytes;

Size = SIZE/1024;

xlen=length(x);

t=0:1/Fs:(length(x)-1)/Fs;

set(handles.text16,'string',Size);

%plot(t,x);

axes(handles.axes3) % Select the proper axes

plot(t,x)

set(handles.axes3,'XMinorTick','on')

grid on

wavwrite(DataCompressed8,Fs,bits,'output5.wav')

[x,Fs,bits] = wavread('output5.wav');

fileinfo = dir('output5.wav');

SIZE = fileinfo.bytes;

Size = SIZE/1024;

xlen=length(x);

t=0:1/Fs:(length(x)-1)/Fs;

set(handles.text18,'string',Size);

%plot(t,x);

axes(handles.axes4) % Select the proper axes

plot(t,x)

set(handles.axes4,'XMinorTick','on')

grid on

[y1,fs1, nbits1,opts1]=wavread(file_name);

[y2,fs2, nbits2,opts2]=wavread('output3.wav');

[c1x,c1y]=size(y1);

[c2x,c2y]=size(y1);

if c1x ~= c2x

 disp('dimeonsions do not agree');

 else

 R=c1x;

 C=c1y;

 err = (sum(y1(2)-y2).^2)/(R*C);

 MSE=sqrt(err);

 MAXVAL=255;

 PSNR = 20*log10(MAXVAL/MSE);

 MSE= num2str(MSE);

43

43

if(MSE > 0)

 PSNR= num2str(PSNR);

 else

PSNR = 99;

end

fileinfo = dir(file_name);

SIZE = fileinfo.bytes;

Size = SIZE/1024;

fileinfo1 = dir('output3.wav');

SIZE1 = fileinfo1.bytes;

Size1 = SIZE1/1024;

CompressionRatio = Size/Size1;

 set(handles.text21,'string',PSNR)

 set(handles.text23,'string',MSE)

 set(handles.text24,'string',CompressionRatio)

end

end

44

44

8. RESULTS

 We RUN AudioCompresssion.m File. This is Method 1 using HAAR Wavelet.

 When we RUN in MATLAB, Following window will appear.(Fig 8(a))

 Select AUDIO file and then Press Compress Audio Button. Observe difference between Size of

Audio. It is compressed then we will get output windows as shown in Fig 8(b). Compare audio

file sizes before and after compression. The compressed audio file is generated as Output1.wav

in the same path as the original source file (AudioCompresssion.m).

Fig 8(a): Program output (Haar wavelet)

45

45

Fig 8(b) Graphical user interface for audio compression

 Now run AudioCompression2.m file. Select audio file and press Compress Audio button. We will

get the program output window as shown in Fig 7(c). Observe the size of compressed audio. Here,

three compressed audio files are generated and saved in the same path as the original source file.

These three outputs correspond to different discrete cosine transform (DCT) window sizes of 2, 4

and 8. The percentage change in compressed files may differ depending on the quality of original

file and size.

Fig.8(c) Program output (Daubenches wavelet)

46

46

Fig.8(d) : Original audio signal (size: 414.691kB)

Fig.8(e) Haar-wavelet-decomposed audio signal (size: 207.367kB)

Fig. 8(f) Daubenches-wavelet-decomposed audio signal (size: 192.043kB)

47

47

9. CONCLUSION

We have implemented an audio compression procedure using wavelet transform technique.

A MATLAB simulation of the project was successfully implemented, simplifying some of its

features, but keeping its main structure and contributions. Our algorithm successfully

compresses the audio which consists of speech signal. We have applied our algorithm on

many audio files and found that it is successfully compressed.

48

48

10. BIBLIOGRAPHY

REFERENCES:

1. Understanding Matlab: A Textbook for Beginners by S.S. Alam S.N. Alam

2. MATLAB for Machine Learning by Giuseppe Ciaburro

3. “The ATMEGA Microcontroller and Embedded systems” by Mazidi.

4. MATLAB Deep Learning: With Machine Learning, Neural Networks and Artificial

 Intelligence by Phil Kim

WEBSITES

 www.mathworks.com

 www.wikipedia.org

 www.alldatasheets.com

https://www.amazon.in/s/ref=dp_byline_sr_book_1?ie=UTF8&field-author=S.S.+Alam+S.N.+Alam&search-alias=stripbooks
https://www.amazon.in/Giuseppe-Ciaburro/e/B075XKX7XF/ref=dp_byline_cont_book_1
https://www.amazon.in/s/ref=dp_byline_sr_book_1?ie=UTF8&field-author=Phil+Kim&search-alias=stripbooks
http://www.mathworks.com/

	ACKNOWLEDGEMENT
	Compression is process of converting an input data stream into another data stream that has smaller size. Compression provides the reduction in redundancy also used to reduce storage requirements overall program execution time may be reduced. ...

	Non linear frequency response of the hear:
	Masking property of the auditory system:
	Audio compression:
	Lossless compression:
	Lossy compression:
	MPEG Audio coding standards:
	Speech compression:
	Evaluating compressed audio:
	Different Compression Techniques
	Wavelet Transforms:

	3. WAVELET REPRESENTATION FOR
	AUDIO SIGNALS
	Wavelet Representation For Audio Signal:
	Wavelet Based Compression Techniques:
	a) Thresholding:
	b) Quantization:
	c) Encoding:

	Wavelet packet representation:
	The MATLAB language.
	The MATLAB working environment.
	Handle Graphics.
	The MATLAB mathematical function library.
	The MATLAB Application Program Interface (API).
	A minimum MATLAB session:
	Starting MATLAB:
	Quitting MATLAB

	Main features of the implementation
	Considerations:
	1. Understanding Matlab: A Textbook for Beginners by S.S. Alam S.N. Alam
	2. MATLAB for Machine Learning by Giuseppe Ciaburro

