YEAR: **2016-17 (I SEMESTER)**PAPER: **I A**NAME OF THE LECTURER: **DR ARS KUMAR ,DR. L. MALLESWARA RAO,P RAMAKRISHNA RAO**&
ASS JYOTHI

Month & Week	Hours available	Syllabus Topic	Additional Inputs / Value Additions		Curricul	ar Activity			Co-Curri	cular Activity	
				Activity	Hours Allotted	Whether Conducted	If not Alternate Date	Activity	Hours Alloted	Whether Conducted	If not Alternate Date
June	08	Vector Analysis: Scalar and vector fields, gradient of a scalar field and its physical significance. Divergence and curl of a vector field and related problems.		Vector Analysis	4	Yes					
July	16	Vector Analysis: Vector integration, line, surface and volume integrals. Stokes, Gauss and Greens theorems-simple applications Mechanics of Particles		Vector Analysis	4	Yes		Assignment I	1	Yes	
		Laws of motion, Motion of variable mass system, motion of a rocket, multi-stage rocket, conservation of		Mechanics of particles	6	Yes			1	Yes	
		energy and momentum. Collisions: Collisions in two and three dimensions, concept of impact parameter, scattering cross-section, Rutherford scattering.		Collisions	6	Yes		PPT –I	1	Yes	
August	16	Mechanics of continuous media: Elastic constants of isotropic solids and their relation. Poisson's ratio, Classification of beams, types of		Mechanics of continuous media	5	Yes		Student seminars I			

		bending, point load, distributed load, shearing force and bending moment, sign conventions, simple supported beam carrying a concentrated load at mid span, cantilever with an end load. Central force: Central forces — definition and examples, conservative nature of central forces, conservative force as a negative gradient of potential energy, equation of motion under a central force.	Classification of beams Central force	5	Yes	Assignment II PPT –II			
September	16	Planetary Motion: Gravitational potential and gravitational field. motion under inverse square law, derivation of Kepler's laws. Special theory of relativity: Galilean relativity, absolute frames, Michelson-Morley experiment, Postulates of special theory of relativity. Lorentz transformation, time dilation, length contraction, mass-energy relation.	Planetary Motion Special theory of relativity	8	Yes	Assignment III Student seminar II Assignment IV	1 1	Yes	
October	04	Mechanics of rigid bodies: Definition of Rigid body, rotational kinematic relations, equation of motion for a rotating body, angular momentum and inertial tensor. Eulers equation, precession of a top, Gyroscope. Precession of the equinoxes.	Mechanics of rigid bodies	4	Yes	Assignment V			

YEAR: **2016-17 (I SEMESTER)** PAPER: **I B** NAME OF THE LECTURER: **DR ARS KUMAR, DR. L. MALLESWARA RAO & P.RAMAKRISHNA RAO**

Month & Week	Hours available	Syllabus Topic	Additional Inputs / Value Additions		Curricula	r Activity			Co-Curricu	ılar Activity	
				Activity	Hours Allotted	Whether Conducted	If not Alternate Date	Activity	Hours Alloted	Whether Conducted	If not Alternate Date
Nov	8	Simple Harmonic oscillations: Simple harmonic oscillator, and solution of the differential equation— Physical characteristics of SHM, torsion		Simple Harmonic oscillations	12	Yes		Assignment I	1	Yes	
Dec	16	pendulum, - measurement of rigidity modulus , compound pendulum, measurement of 'g', combination of two mutually perpendicular simple harmonic vibrations of same frequency and different frequency, Lissajous figures.									
		Damped Oscillations: Damped harmonic oscillator, solution of the differential equation of damped oscillator. Energy considerations, comparison with undamped harmonic oscillator, logarithmic decrement, relaxation time,		Damped Oscillations	08			Assignment II			
		quality factor. Forced Oscillations:-Differential equations of forced oscillator and its solution, amplitude resonance, velocity resonance, sharpness of resonance. Electrical analogy for a simple oscillator.		Forced Oscillations	06	Yes		1		Yes	

Jan	16	Complex vibrations: Fourier theorem and evaluation of the Fourier coefficients, analysis of periodic wave functions-square wave, triangular wave, saw-tooth wave.	Complex vibrations	08	Yes	Assignment III	1	Yes	
Feb	16	Vibrating Strings: Transverse wave propagation along a stretched string, general solution of wave equation and its significance, modes of vibration of stretched string clamped at both ends, overtones, energy transport, transverse impedance Longitudinal Vibration of bars: Longitudinal vibrations in bars- wave equation and its general solution. Special cases (i) bar fixed at both ends ii) bar fixed at the mid point iii) bar free at both ends iv) bar fixed at one end.	Vibrating Strings Longitudinal Vibration of bars	06	Yes	Assignment IV	1	Yes	
Mar	8	Transverse Vibrations of bars: Transverse vibrations in a bar — wave equation and its general solution. Boundary conditions, clamped free bar, free-free bar, bar supported at both ends, tuning fork. Ultrasonics: Ultrasonics, properties of ultrasonic waves, production of ultrasonics by piezoelectric and magneto striction methods, detection of ultrasonics, determination of wavelength of ultrasonic waves. Velocity of ultrasonic	Transverse Vibrations of bars Ultrasonics	06	Yes	Assignment V PPT –II	1	Yes	

in liquids by sear's method. Applications				
of ultrasonic waves.				

YEAR: 2016-17 (V SEMESTER)
PAPER: IV A
NAME OF THE LECTURER: Dr APV APPA RAO & DR. L. MALLESWARA RAO, DSDJ Swaroop

Month & Week	Hours available	Syllabus Topic	Additional Inputs / Value Additions		Curricu	ılar Activity			Co-Curric	ular Activity	
			Additions	Activity	Hours Allotted	Whether Conducted	If not Alternate Date	Activity	Hours Allotted	Whether Conducted	If not Alternate Date
June	12	Atomic and molecular physics: Introduction —Drawbacks of Bohr's atomic model- Sommerfeld's elliptical orbits-relativistic correction (no derivation). Vector atom model and Stern-Gerlach experiment - quantum numbers associated with it. L-S and j-j coupling schemes. Zeeman effect and its experimental arrangement. Raman effect, hypothesis, Stokes and Anti Stokes lines. Quantum theory of Raman effect. Experimental arrangement — Applications of Raman effect. Matter waves: Matter waves, de Broglie's hypothesis - wavelength of matter waves, Properties of matter waves - Davisson and Germer experiment — Phase and group		Atomic spctra Raman effect	4	Yes		Assignment I			

		velocities.						
July	12	Uncertainty Principle Heisenberg's uncertainty principle for position and momentum (x and p), &	Uncertainty Principle	8	Yes	Assignment II	1	Yes
		energy and time (E and t). Experimental verification - Complementarity principle of Bohr.					1	Yes
		Quantum (wave) mechanics Basic postulates of quantum	Quantum mechanics	4	Yes	Seminar I	1	Yes
		mechanics-Schrodinger time independent and time dependent wave equations-derivations. Physical interpretation of wave function. Eigen functions, Eigen values. Application of Schrodinger wave equation to particle in one dimensional infinite box				Guest Lecture	1	Yes
August	12	General Properties of Nuclei Basic ideas of nucleus -size, mass, charge density (matter energy), binding energy, angular momentum, parity, magnetic moment, electric moments. Liquid drop model and Shell model (qualitative aspects only) - Magic numbers.	General properties	12	Yes	Assignment III	1	Yes

September	12	Radioactivity decay:	Radioactivity	12	Yes	Student	1	Yes	
		Alpha decay: basics of α-decay	decay			seminar II			
		processes. Theory of α-decay,							
		Gamow's theory, Geiger Nuttal law.β-							
		decay, Energy kinematics for β-decay,				Assignment			
		positron emission, electron capture,	Crystal			IV			
		neutrino hypothesis.	structure		Yes				
		Crystal Structure: Amorphous and				DDT II			
		crystalline materials, unit cell, Miller				PPT-II			
		indices, reciprocal lattice, types of							
		lattices, diffraction of X-rays by							
		crystals, Bragg's law, experimental							
		techniques, Laue's method and powder				Career			
		diffraction method.				Guidance			
October	06	Superconductivity:	Schrodinger		Yes	Assignment			
		Introduction - experimental facts,	Wave	6		V			
		critical temperature - critical field -	Equation						
		Meissner effect – Isotope effect - Type				Career			
		I and type II superconductors - BCS				Guidance			
		theory (elementary ideas only) -							
		applications of superconductors.							

YEAR: 2016-17 (VI SEMESTER)

PAPER: VII C

NAME OF THE LECTURER: DR APV APPA RAO & ASS JYOTHI

Month & Week	Hours available	Syllabus Topic	Additional Inputs / Value Additions		Curri	icular Activity			Co-Curricu	llar Activity	
				Activity	Hours	Whether	If not	Activity	Hours	Whether	If not
				Allotted Conducted Alternate Alloted Conducted						Alternate	

						Date				Date
Nov Dec	6	Introduction to Energy: Definition and units of energy, power, Forms of energy, Energy flow diagram to the earth. Role of energy in economic and social development Environmental Effects: Environmental degradation		9	Yes		Assignment I Student seminar I	1	Yes	
		due to energy production and utilization, air and water pollution, depletion of ozone layer, global warming, biological damage due to environmental degradation.					Schillar 1			
Jan	12	Global Energy Scenario: Energy consumption in various sectors, energy resources, coal, oil, natural gas, nuclear and hydroelectric power. Indian		9	Yes		Assignment II	1	Yes	
		Energy Scene: Energy resources available in India, urban and rural energy consumption, nuclear energy					PPTI	1	Yes	
		- promise and future, energy as a factor limiting growth, need for use of new and renewable energy		9	Yes		Assignment III	1	Yes	
		sources. Solar energy: Solar energy, Spectral distribution of radiation, solar water heating system, Applications, Solar cooker. Solar cell, Types of solar cells.					Career Guidance Class	1	Yes	
Feb	12	Wind Energy: Introduction, Principle of wind energy conversion, and Components of wind turbines, Operation and characteristics of a wind		9	Yes		Assignment IV	1	Yes	
		turbines, Operation and characteristics of a wind turbine, Applications of wind energy. Ocean Energy: Introduction, Principle of ocean thermal energy conversion, Tidal power generation,					PPT II	1	Yes	
		Tidal energy technologies, Energy from waves, Hydrogen Energy: History of hydrogen energy- Hydrogen production methods-Electrolysis of water, uses of hydrogen as fuel		9	Yes		Student seminar II	1	Yes	

Mar	06	.Bio-Energy: Energy from biomass – Sources of	06	Yes	Assignment V	1	Yes
		biomass –Conversion of biomass into fuels – Energy			Career		
		through fermentation – Pyrolysis, gasification and			Guidance	1	Yes
		combustion – Aerobic and anaerobic bio-conversion			Class		
		 Properties of biomass –Properties and 					
		characteristics of biogas.					
		-					

YEAR: **2016-17 (VI SEMESTER)** PAPER: **VIII C 1** NAME OF THE LECTURER: **P RAMAKRISHNA RAO**

Month & Week	Hours available	Syllabus Topic	Additional Inputs / Value Additions		Curr	icular Activity			Co-Curricu	ılar Activity	
				Activity	Hours	Whether	If not	Activity	Hours	Whether	If not
					Allotted	Conducted	Alternate Date		Alloted	Conducted	Alternate Date
Nov	6	Basics of Solar Radiation: Structure of Sun, Solar constant, Concept of Zenith angle and air mass, Definition of declination, hour angle, solar and			9	Yes		Assignment I	1	Yes	
Dec	12	surface azimuth angles; Direct, diffuse and total solar radiation, Solar intensity measurement – pyrheliometer.						Student seminar I	1	Yes	
Jan	12	Radiative Properties and Characteristics of Materials: Kirchoff's law – Relation between absorptance, emittance and reflectance; Selective			9	Yes		Assignment II	1	Yes	
		Surfaces - preparation and characterization, Types and applications; Anti-reflective coating.						PPII	1	res	
		Flat Plate Collectors (FPC) : Description of flat plate collector, Liquid heating type FPC, Energy			9	Yes		Assignment III	1	Yes	
		balance equation, Efficiency, Temperature						Career	1	Yes	

		distribution in FPC, Definitions of fin efficiency and collector efficiency, Evacuated tubular collectors.			Guidance Class			
Feb	12	Solar photovoltaic (PV) cell: Physics of solar cell Type of interfaces, homo, hetero and schottky interfaces, Photovoltaic Effect, Equivalent circuit	9	Yes	Assignment IV	1	Yes	
		of solar cell, Solar cell output parameters, Series and shunt resistances and its effect on cell efficiency; Variation of efficiency with band-gap and temperature.			PPT II	1	Yes	
		Solar PV systems: Solar cell module assembly – Steps involved in the fabrication of solar module, Module performance, I-V characteristics, Modules in series and parallel, Module protection, Solar PV system and its components, PV array, inverter, battery and load.	9	Yes	Student seminar II	1	Yes	
Mar	06	Solar thermal applications: Solar hot water system (SHWS), Types of SHWS, Standard	06	Yes	Assignment V Career	1	Yes	
		method of testing the efficiency of SHWS; Passive space heating and cooling concepts, Solar desalinator and drier, Solar thermal power generation.			Guidance Class	1	Yes	

YEAR: **2016-17 (VI SEMESTER)** PAPER: **VIII C 2** NAME OF THE LECTURER: **J RAMA MOHAN**

Month & Week	Hours available	Syllabus Topic	Additional Inputs / Value Additions		Curri	cular Activity			Co-Curricu	lar Activity	
				Activity Hours Whether If not Activity Hours Whether If not Allotted Conducted Alternate Alloted Conducted Alternate					Hours	Whether	If not
									Alternate		

						Date				Date
Nov Dec	6 12	Introduction: Wind generation, meteorology of wind, world distribution of wind, wind speed variation with height, wind speed statistics, Wind energy conversion principles; General introduction; Types and classification of WECS; Power, torque and speed characteristics.		9	Yes		Assignment I Student seminar I	1	Yes	
Jan	12	Wind Energy Conversion System: Aerodynamic design principles; Aerodynamic theories; axial momentum, blade element; Rotor characteristics; Maximum power coefficient. Wind Energy Application: Wind pumps: Performance analysis, design concept and testing; Principle of wind energy generation; Wind energy in India; Environmental Impacts of Wind farms.		9	Yes		Assignment II PPT I Assignment III Career Guidance Class	1 1 1	Yes Yes Yes Yes	
Feb	12	Small Hydropower Systems: Overview of micro, mini and small hydro systems; Hydrology; Elements of pumps and turbine; Selection and design criteria of pumps and turbines; Site selection; Speed and voltage regulation. Ocean Thermal, Tidal and Wave Energy Systems: Ocean Thermal - Introduction, Technology process, working principle, Electricity generation methods from OCET, Advantages and disadvantages, Applications of OTEC.		9	Yes		Assignment IV PPT II Student seminar II	1 1 1	Yes Yes Yes	
Mar	06	Tidal Energy - Introduction, Origin and nature of tidal energy, Wave Energy – Introduction, Basics of wave motion, Power in waves, Wave energy conversion devices, Advantages and disadvantages, Applications of wave energy.		05	Yes		Assignment V Career Guidance Class	1	Yes Yes	

YEAR: 2016-17 (VI SEMESTER)

PAPER: VIII C3

NAME OF THE LECTURER: DR L MALLESWARA RAO

Month & Week	Hours available	Syllabus Topic	Additional Inputs / Value Additions		Curr	icular Activity			Co-Curricu	ılar Activity	
				Activity	Hours Allotted	Whether Conducted	If not Alternate Date	Activity	Hours Alloted	Whether Conducted	If not Alternate Date
Nov	12	Energy Storage: Need of energy storage; Different modes of energy storage, Flywheel storage, Electrical and magnetic energy storage: Capacitors, electromagnets; Chemical Energy storage: Thermo-chemical, photo-chemical, electro-chemical, Hydrogen for energy storage.			9	Yes		Assignment I Student seminar I	1	Yes	
Jan	12	Electrochemical Energy Storage Systems: Batteries: Primary, Secondary, Lithium, Solid-state and molten solvent batteries; Lead acid batteries; Nickel Cadmium Batteries; Advanced Batteries. Role of carbon nano-tubes in electrodes. Magnetic and Electric Energy Storage Systems: Superconducting Magnet Energy Storage (SMES) systems; Capacitor and battery: Comparison and application; Super capacitor:			9	Yes		Assignment II PPT I Assignment III Career Guidance Class	1 1 1 1	Yes Yes Yes Yes	
Feb	12	Fuel Cell: Fuel cell definition, difference between batteries and fuel cells, fuel cell components, principle and working of fuel cell, performance characteristics, efficiency. Advantages and disadvantages of fuel cell.			9	Yes		Assignment IV PPT II Student seminar II	1 1 1	Yes Yes Yes	

Mar	06	Types of Fuel Cells: Classification, Alkaline fuel cell, phosphoric acid fuel cell, molten carbonate fuel cell; solid oxide fuel cell, applications of fuel cells.	05	Yes	Assignment V Career Guidance Class	1	Yes Yes

ANNUAL CURRICULAR PLAN I/III/V

YEAR: **2016-17** PAPER: III NAME OF THE LECTURER: **Dr A P V Appa Rao Sri J Rama Mohan& GS Devi**

Month & Week	Hours available	Syllabus Topic	Additional Inputs / Value Additions		Curricular	Activity			Co-Curricu	ular Activity	
				Activity	Hours Allotted	Whether Conducted	If not Alternate Date	Activity	Hours Allotted	Whether Conducted	If not Alternate Date
June	16	Aberrations: Introduction to Chromatic aberration — calculation of longitudinal chromatic aberration of a thin lens — achromatism for two lenses (a) when in contact and (b) when separated by a distance — achromatism of a camera lens — Introduction to Spherical aberration — minimization of spherical aberration — Coma — Astigmatism — Curvature of field — distortion.		Matrix methods in Paraxial Optics.	10 05	YES		Assignment I			
		Interference									

		Principle of superposition – coherence– .								
July	16	conditions for Interference of light.								
		Interference by division of wave front:	Inte	erference	15	YES	Assignment	1 hour	YES	
		Fresnel's biprism – determination of					П			
		wave length of light Determination of								
		thickness of a transparent material using								
		Biprism – change of phase on reflection								
		Lloyd's mirror experiment.								
		Interference by division of amplitude:								
		Oblique incidence of a plane wave on a								
		thin film due to reflected and								
		transmitted light (Cosine law) – Colours								
		of thin films - Non reflecting films					Seminar	1 Hour	YES	
		Interference by a film with two non-								
		parallel reflecting surfaces (Wedge								
		shaped film) – Determination of								
		diameter of wire. Newton's rings in					Assignment	1 Hour	YES	
		reflected light with contact between					Ш			
		lens and glass plate – Determination of								
		wave length of monochromatic light –								
		Michelson Interferometer – types of								
		fringes – Determination of wavelength								
		of monochromatic light and thickness of								
		a thin transparent plate.								
August	16	Polarization:-								
		Polarized light : Methods of Polarization,	Pol	larization	08	YES	Seminar			
		Polarizatioin by reflection, refraction,						1 hour	YES	
		Double refraction, scattering of light –								
		Brewsters law – Malus law – Nicol prism								
		as polarizer and analyzer – Refraction of								
		plane wave incident on negative crystals								
		(Huygen's explanation) – Quarter wave								
		plate, Half wave plate— Optical activity,								

		analysis of light by Laurent's half shade polarimeter. Lasers: Introduction — Spontaneous emission — Stimulated emission — Population inversion. Laser principle— Types of Lasers — He-Ne laser — Ruby laser — Semi conductor laser — Laser characteristics — Applications of lasers.	Lasers	09	YES				
September	16	Fiber Optics and Holography: Introduction – Optical fibers – Types of optical fibers – Step and graded index fibers –Fiber material – Principles of fiber communication (qualitative treatment only) advantages of fiber communication. Basic Principle of Holography and its applications. Gabor hologram. Diffraction: Introduction – Fraunhoffer diffraction:-Diffraction due to single slit— Limit of resolution – Fraunhoffer diffraction due to double slit – Fraunhoffer diffraction pattern with N slits (diffraction grating). Resolving Power of grating – Determination of wave length of light in normal and oblique incidence methods using diffraction grating.	Fiber Optics & Holography Diffraction	05 08	Yes	Assignment-IV Assignment V	1 hour	YES	
October	8	Fresnel diffraction Fresnel's half period zones – area of the half period zones –zone plate – Comparison of zone plate with convex lens – Phase reversal zone plate – difference between	Fresnel Diffraction	08	YES				

	interference and diffraction. Distinction between Fresnel and Fraunhoffer diffraction.				

ANNUAL CURRICULAR PLAN I/III/V

YEAR: **2016-17** PAPER: V NAME OF THE LECTURER: **Sri J Rama Mohan, Sri P Ramakrishna Rao & ASS Jyothi**

Month & Week	Hours available	Syllabus Topic	Additional Inputs / Value Additions		Curricular	Activity			Co-Curricu	ılar Activity	
			Additions	Activity	Hours Allotted	Whether Conducted	If not Alternate Date	Activity	Hours Allotted	Whether Conducted	If not Alternate Date
June	12	Electric field intensity and potential: Gauss's law statement and its proof- Electric field intensity due to (1) Uniformly charged sphere and (2) an infinite conducting sheet of charge. Electrical potential — equi potential surfaces- potential due to i) a		Electrostatics	8	YES		Assignment I	1	YES	
July	12	point charge, ii) charged spherical shell. Dielectrics: Electric dipole moment and molecular polarizability- Electric		Dielectrics	6	YES		Assignment	1	VEC	
		displacement D, electric polarization P – relation between D, E and P- Dielectric constant and susceptibility. Boundary conditions at the dielectric surface.		Capacitance	10	YES		Assignment II		YES	
August	12	Electric and magnetic fields		Magnetostatics	10	YES		Assignment-	01	YES	

					Г	 		1	_
		Biot-Savart's law, explanation and				III	Hour		
		calculation of B due to long straight wire, a							
		circular current loop and solenoid – Hall							
		effect – determination of Hall coefficient							
		and applications.							
		Electromagnetic induction							
		Faraday's law-Lenz's law- Self and mutual							
		inductance, coefficient of coupling,							
		calculation of self inductance of a long							
		solenoid, energy stored in magnetic field.							
		Transformer - energy losses - efficiency.							
September	12	Alternating currents and electromagnetic	Moving charges			Seminar	02	YES	
		waves	in electric and	8	YES		Hours		
		Alternating current - Relation between	magnetic fields						
		current and voltage in LR and CR circuits,							
		vector diagrams, LCR series and parallel							
		resonant circuit, Q -factor, power in ac							
		circuits.	Electromagnetic	4	YES	Assignment	01	YES	
		Maxwell's equations :Idea of displacement	Induction			IV	Hour		
		current - Maxwell's equations (integral and							
		differential forms) (no derivation),							
		Maxwell's wave equation (with derivation).							
		Pointing theorem (statement), production							
		of electromagnetic waves (Hertz							
		experiment).							
October	6	Basic electronics:	Electromagnetic	6	YES	Assignment	1	YES	
		PN junction diode, Zener diode, I-V	Induction			V			
		characteristics, PNP and NPN transistors,							
		CB, CE and CC configurations – Relation							
		between α , β and γ - transistor (CE)							
		characteristics, Transistor as an amplifier.							
		Digital electronics:							
		Number systems - Conversion of binary to							
		decimal system and vice versa. Binary							

subtraction (2's complement methods).Law					
of Boolean algebra - De Morgan's laws	-				
statement and proof, Basic logic gate	,				
NAND and NOR as universal gate	,				
exclusive-OR gate, Half adder and Fu	1				
adder.					

ANNUAL CURRICULAR PLAN II/IV/VI

YEAR: **2016-17** PAPER: IV NAME OF THE LECTURER: **Dr A P V Appa Rao, Sri J Rama Mohan & GS Devi**

Month & Week	Hours available	Syllabus Topic	Additional Inputs / Value Additions		Co-Curricular Activity						
				Activity	Hours Allotted	Whether Conducted		Activity	Hours Allotted	Whether Conducted	If not Alternate
December	15	Kinetic theory of gases:					Date				Date
December	15	Kinetic theory of gases: Introduction – Deduction of Maxwell's law of distribution of molecular speeds, Transport Phenomena – Viscosity of gases – thermal conductivity – diffusion of gases. Thermodynamics: Introduction – Reversible and irreversible processes – Carnot's engine and its efficiency – Carnot's		Transport Phenomena	01	YES					

		theorem – Second law of thermodynamics, Kelvin's and Claussius statements – Thermodynamic scale of temperature.	Carnot's engine and it's efficiency	01	YES	Assignment I	1	YES
January	15	Entropy:- Entropy, physical significance – Change in entropy in reversible and irreversible processes – Entropy and disorder – Entropy of universe – Temperature-Entropy (T-S) diagram. Change of Entropy of a perfect gas – Change of entropy when ice changes into steam.	Change of Entropy of a perfect gas	07	YES	Assignment II Seminar	1 hour	YES YES
		Thermodynamic potentials and Maxwell's equations: Thermodynamic potentials – Derivation of Maxwell's thermodynamic relations – Clausius-Clayperon's equation – Derivation for ratio of specific heats – Derivation for difference of two specific heats for perfect gas. Joule Kelvin effect – expression for Joule Kelvin coefficient for perfect and Vanderwaal's gas.	Clausius- Clayperon's equation	08	YES	Assignment III Seminar	1 Hour	YES
February	15	Low temperature Physics: Introduction – Joule Kelvin effect – liquefaction of gas using porous plug experiment. Joule expansion – Distinction between adiabatic and Joule Thomson expansion – Expression for Joule Thomson cooling –	Adiabatic demagnetization Production of low temperatures	15	YES	Assignment IV	1 hour	YES

		Liquefaction of helium, Kapitza's method – Adiabatic demagnetization – Production of low temperatures – Principle of refrigeration, vapour compression type. Working of refrigerator and Air conditioning machines. Effects of Chloro and Fluro Carbons on Ozone layer.							
March	15	Quantum theory of radiation: Black body-Ferry's black body — distribution of energy in the spectrum of Black body — Wein's displacement law, Wein's law, Rayleigh-Jean's law — Quantum theory of radiation - Planck's law — deduction of Wein's law and Rayleigh-Jeans law from Planck's law - Measurement of radiation — Earth as a Black Body. Types of pyrometers — Disappearing filament optical pyrometer — experimental determination — determination of solar constant, effective temperature of sun.	Disappearing filament optical pyrometer — experimental determination	15	Yes	Assignment V	1 hour	YES	

YEAR: **2016-17**PAPER: VII
NAME OF THE LECTURER: **Dr A PV Appa Rao, J Rama Mohan, Dr L Malleswara Rao**Sri P Ramakrishna Rao, ASS Jyothi & GS Devi

Month & Week	Hours available	Syllabus Topic	Additional Inputs / Value Curricular Activity Additions					Co-Curricular Activity				
				Activity	Hours Allotted	Whether Conducted	If not Alternate Date	Activity	Hours Allotted	Whether Conducted	If not Alternate Date	
December	12	Introduction to Energy: Definition and units of energy, power, Forms of energy, Energy flow diagram to the earth. Role of energy in economic and social development. Environmental Effects: Environmental degradation due to energy production and utilization, air and water pollution, depletion of ozone layer, global warming, biological damage due to environmental degradation.		Role of energy in economic and social development.	01	YES		Assignment	1	YES		
January	12	Global Energy Scenario: Energy consumption in various sectors, energy resources, coal, oil, natural gas, nuclear and hydroelectric power. Indian Energy Scene: Energy resources available in India, urban and rural energy consumption, nuclear energy - promise and future, energy as a factor limiting growth, need for use of new and renewable energy sources.		Energy resources available in India	01	YES		Assignment	1	YES		
February	12	Solar energy: Solar energy, Spectral distribution of radiation, solar water heating system, Applications, Solar cooker. Solar		Solar energy,	01	YES		Assignment	01	YES		

		cell, Types of solar cells. Wind Energy: Introduction, Principle of wind energy conversion, and Components of wind turbines, Operation and characteristics of a wind turbine, Applications of wind energy.	Spectral distribution of radiation						
March	12	Ocean Energy: Introduction, Principle of ocean thermal energy conversion, Tidal power generation, Tidal energy technologies, Energy from waves. Hydrogen Energy: History of hydrogen energy-Hydrogen production methods-Electrolysis of water, uses of hydrogen as fuel. Bio-Energy Energy from biomass – Sources of biomass – Conversion of biomass into fuels – Energy through fermentation – Pyrolysis, gasification and combustion – Aerobic and anaerobic bio-conversion – Properties of biomass –Properties and characteristics of biogas.	Energy from biomass – Sources of biomass – Conversion of biomass into fuels	01	YES	Seminar	01	YES	