ANNUAL CURRICULAR PLAN I/III/V

YEAR: 2019-20 (I SEMESTER) PAPER: I NAME OF THE LECTURER: DR. L. MALLESWARA RAO, P RAMAKRISHNA RAO, ASS JYOTHI & P Rajeswari

Month & Week	Hours available	Syllabus Topic	Additional Inputs / Value Additions		Curricul	ar Activity			Co-Curri	cular Activity	
				Activity	Hours Allotted	Whether Conducted	If not Alternate Date	Activity	Hours Alloted	Whether Conducted	If not Alternate Date
June	04	Vector Analysis: Scalar and vector fields, gradient of a scalar field and its physical significance. Divergence and curl of a vector field and related problems.		Vector Analysis	4	Yes					
July	16	Vector Analysis: Vector integration, line, surface and volume integrals. Stokes, Gauss and Greens theorems- simple applications Mechanics of Particles		Vector Analysis	4	Yes		PPT –I Assignment	1	Yes	
		Laws of motion, Motion of variable mass system, motion of a rocket, multi-stage rocket, conservation of energy and momentum.		Mechanics of particles	6	Yes		PPT –II	1	Yes	
		Collisions: Collisions in two and three dimensions, concept of impact parameter, scattering cross-section, Rutherford scattering.		Collisions	6	Yes		Student seminars I	1	Yes	
August	16	Mechanics of continuous media: Elastic constants of isotropic solids and their relation. Poisson's ratio, Classification of beams, types of bending, point load,		Mechanics of continuous media	5	Yes		Assignment II	1	YES	

		distributed load, shearing force and bending moment, sign conventions, simple supported beam carrying a concentrated load at mid span, cantilever with an end load. Central force: Central forces – definition and examples, conservative nature of central forces, conservative force as a negative gradient of potential energy, equation of motion under a central force.	Classification of beams Central force	5	Yes	Assignment III	1	YES
September	16	Planetary Motion: Gravitational potential and gravitational field. motion under inverse square law, derivation of Kepler's laws. Coriolis force and its expressions. Special theory of relativity: Galilean relativity, absolute frames, Michelson-Morley experiment, Postulates of special theory of relativity. Lorentz transformation, time dilation, length contraction, mass-energy relation.	Planetary Motion Special theory of relativity	8	Yes	Assignment IV Student seminar II	1	Yes
October	04	Mechanics of rigid bodies: Definition of Rigid body, rotational kinematic relations, equation of motion for a rotating body, angular momentum and inertial tensor. Eulers equation, precession of a top, Gyroscope. Precession of the equinoxes.	Mechanics of rigid bodies	4	Yes	Assignment V	1	YES

ANNUAL CURRICULAR PLAN II/IV/VI

YEAR: 2019-20 (II SEMESTER)

PAPER: II

NAME OF THE LECTURER: DR. L. MALLESWARA RAO & P.RAMAKRISHNA RAO, ASS JYOTHI &GS DEVI

Month & Week	Hours available	Syllabus Topic	Additional Inputs / Value Additions		Curricular <i>i</i>	Activity			Co-Curric	ular Activity	
				Activity	Hours Allotted	Whether Conducted	If not Alternate Date	Activity	Hours Alloted	Whether Conducted	If not Alternate Date
Dec	16	Simple Harmonic oscillations: Simple harmonic oscillator, and solution of the differential equation— Physical characteristics of SHM, torsion pendulum, - measurement of rigidity modulus , compound pendulum, measurement of 'g', combination of two mutually perpendicular simple harmonic vibrations of same frequency and different frequency, Lissajous figures. Damped Oscillations: Damped harmonic oscillator, solution of the differential equation of damped oscillator. Energy considerations, comparison with undamped harmonic oscillator, logarithmic decrement, relaxation time, quality factor.		Simple Harmonic oscillations Damped Oscillations	12	Yes		Assignment I	1	YES	
Jan	16	Forced Oscillations:-Differential equations of forced oscillator and its solution, amplitude resonance, velocity resonance, sharpness of resonance. Electrical analogy for a simple		Forced Oscillations	06	Yes		PPT –I	1	Yes	

		oscillator. Complex vibrations: Fourier theorem and evaluation of the Fourier coefficients, analysis of periodic wave functions-square wave, triangular wave, saw-tooth wave.	Complex vibrations	08	Yes	Student seminars I	1	Yes	
Feb	16	Vibrating Strings: Transverse wave propagation along a stretched string, general solution of wave equation and its significance, modes of vibration of stretched string clamped at both ends, overtones, energy transport, transverse impedance	Vibrating Strings	12	Yes	Assignment III	1	Yes	
		Longitudinal Vibration of bars: Longitudinal vibrations in bars- wave equation and its general solution. Special cases (i) bar fixed at both ends ii) bar fixed at the mid point iii) bar free at both ends iv) bar fixed at one end.	Longitudinal Vibration of bars	06	Yes	Assignment IV	1	YES	
Mar	16	Transverse Vibrations of bars: Transverse vibrations in a bar — wave equation and its general solution. Boundary conditions, clamped free bar, free-free bar, bar supported at both ends, tuning fork. Ultrasonics: Ultrasonics, properties of	Transverse Vibrations of bars	06	Yes	Student seminar II	1	Yes	
		ultrasonic waves, production of ultrasonics by piezoelectric and magneto striction methods, detection of ultrasonics, determination of wavelength of ultrasonic waves. Velocity of ultrasonic in liquids by sear's method. Applications of ultrasonic waves.	Ultrasonics	06	Yes	Assignment V	1	YES	

ANNUAL CURRICULAR PLAN II/IV/VI

YEAR: 2019-20 (V SEMESTER) PAPER: VI NAME OF THE LECTURER: DR APV APPARAO, DR L MALLESWARA RAO & P RAJESWARI

Month &	Hours	Syllabus Topic	Additional Inputs / Value Additions		Curric	ular Activity			Co-Curric	ular Activity	
Week	available			Activity	Hours Allotted	Whether Conducted	If not Alternate Date	Activity	Hours Alloted	Whether Conducted	If not Alternate Date
Dec	12	Atomic and molecular physics Introduction —Drawbacks of Bohr's atomic model. Vector atom model and Stern-Gerlach experiment - quantum numbers associated with it. L-S and j- j coupling schemes. Zeeman effect (Definition only) - Raman effect, hypothesis, Stokes and Anti Stokes lines. Quantum theory of Raman effect. Experimental arrangement—Applications of Raman effect.			09	Yes		Assignment I	1	Yes	
Jan	12	Matter waves & Uncertainty Principle Matter waves, de Broglie's hypothesis - wavelength of matter waves, Properties of matter waves - Davisson and Germer experiment — Heisenberg's uncertainty principle for position and momentum (x and p) & Energy and time (E and t). Quantum (wave) mechanics Basic postulates of quantum mechanics-Schrodinger time independent and time dependent wave equations-derivations. Physical interpretation of wave function. Eigen functions, Eigen values. Application of Schrodinger wave equation to particle in one dimensional infinite box.			09	Yes		Student seminar I Assignment II Assignment III	1	Yes	
Feb	12	General Properties of Nuclei			09	Yes		PPT	1	Yes	

	Basic ideas of nucleus -size, mass, charge density (matter energy), binding energy, magnetic moment, electric moments. Liquid drop model and Shell model (qualitative aspects only) - Magic numbers. Radioactivity decay Alpha decay: basics of α-decay processes. Theory of α-decay, Gamow's theory, Geiger Nuttal law. β-decay, Energy kinematics for β-decay, positron emission, electron capture, neutrino hypothesis.		Yes	Assignment IV Career Guidance Class	1	YES	
Mar 06	Crystal Structure Amorphous and crystalline materials, unit cell, Miller indices, reciprocal lattice, types of lattices, diffraction of X-rays by crystals, Bragg's law, experimental techniques, Laue's method. Superconductivity Introduction - experimental facts, critical temperature - critical field - Meissner effect —Isotope effect - Type I and type II superconductors - applications of superconductors.	09	Yes	PPT seminar Career Guidance Class Assignment V	1 1 1	Yes Yes Yes	

ANNUAL CURRICULAR PLAN II/IV/VI

YEAR: **2019-20** PAPER: IV NAME OF THE LECTURER: **Dr A P V Appa Rao, Sri J Rama Mohan & GS Devi**

Month & Week	Hours available	Syllabus Topic	Additional Inputs / Value Additions		Curricular A	ctivity			Co-Curricu	ular Activity	
				Activity	Hours Allotted	Whether Conducted	If not Alternate Date	Activity	Hours Allotted	Whether Conducted	If not Alternate Date
December	15	Kinetic theory of gases: Introduction – Deduction of Maxwell's law of distribution of molecular speeds, Transport Phenomena – Viscosity of gases – thermal conductivity – diffusion of gases. Thermodynamics:		Transport Phenomena	01	YES					
		Introduction – Reversible and irreversible processes – Carnot's engine and its efficiency – Carnot's theorem – Second law of thermodynamics, Kelvin's and Claussius statements – Thermodynamic scale of temperature.		Carnot's engine and it's efficiency	01	YES		Assignment I	1	YES	
January	15	Entropy:- Entropy, physical significance – Change in entropy in reversible and irreversible processes – Entropy and disorder – Entropy of universe – Temperature-		Change of Entropy of a perfect gas	07	YES		Assignment II	1 hour	YES	

		Entropy (T-S) diagram. Change of Entropy of a perfect gas – Change of entropy when ice changes into steam. Thermodynamic potentials and Maxwell's equations: Thermodynamic potentials – Derivation of Maxwell's thermodynamic relations – Clausius-Clayperon's equation – Derivation for ratio of specific heats – Derivation for difference of two specific heats for perfect gas. Joule Kelvin effect – expression for Joule Kelvin coefficient for perfect and Vanderwaal's gas.	Clausius- Clayperon's equation	08	YES	Seminar Assignment III Seminar	1 1 Hour 1 Hour	YES
February	15	Low temperature Physics: Introduction — Joule Kelvin effect — liquefaction of gas using porous plug experiment. Joule expansion — Distinction between adiabatic and Joule Thomson expansion — Expression for Joule Thomson cooling — Liquefaction of helium, Kapitza's method — Adiabatic demagnetization — Production of low temperatures — Principle of refrigeration, vapour compression type. Working of refrigerator and Air conditioning machines. Effects of Chloro and Fluro Carbons on Ozone layer.	Adiabatic demagnetization Production of low temperatures	15	YES	Assignment IV	1 hour	YES

March	15	Quantum theory of radiation:							
		Black body-Ferry's black body –	Disappearing						
		distribution of energy in the spectrum	filament optical	15	Yes	Assignment	1 hour	YES	
		of Black body – Wein's displacement	pyrometer –			V			
		law, Wein's law, Rayleigh-Jean's law –	experimental determination						
		Quantum theory of radiation - Planck's	determination						
		law – deduction of Wein's law and							
		Rayleigh-Jeans law from Planck's law -							
		Measurement of radiation – Earth as a							
		Black Body. Types of pyrometers –							
		Disappearing filament optical							
		pyrometer – experimental							
		determination – determination of solar							
		constant, effective temperature of sun.							

ANNUAL CURRICULAR PLAN

YEAR: **2019-20**PAPER: VII
NAME OF THE LECTURER: **Dr A PV Appa Rao, J Rama Mohan, Dr L Malleswara Rao Sri P Ramakrishna Rao, ASS Jyothi & GS Devi**

Month & Week	Hours available	Syllabus Topic	Additional Inputs / Value Additions		Curricular	Activity			Co-Curricu	ılar Activity	
				Activity	Hours Allotted	Whether Conducted	If not Alternate Date	Activity	Hours Allotted	Whether Conducted	If not Alternate Date
December	12	Introduction to Energy: Definition and units of energy, power, Forms of energy, Energy flow diagram to the earth. Role of energy in economic and social development. Environmental Effects: Environmental degradation due to energy production and utilization, air and water pollution, depletion of ozone layer, global warming, biological damage due to environmental degradation.		Role of energy in economic and social development.	01	YES		Assignment	1	YES	
January	12	Global Energy Scenario: Energy consumption in various sectors, energy resources, coal, oil, natural gas, nuclear and hydroelectric power. Indian Energy Scene: Energy resources available in India, urban and rural energy consumption, nuclear energy - promise and future, energy as a factor limiting growth, need for use of new and renewable energy sources.		Energy resources available in India	01	YES		Assignment	1	YES	
February	12	Solar energy: Solar energy, Spectral distribution of radiation, solar water heating system, Applications, Solar cooker. Solar		Solar energy,	01	YES		Assignment	01	YES	

		cell, Types of solar cells. Wind Energy: Introduction, Principle of wind energy conversion, and Components of wind turbines, Operation and characteristics of a wind turbine, Applications of wind energy.	Spectral distribution of radiation						
March	12	Ocean Energy: Introduction, Principle of ocean thermal energy conversion, Tidal power generation, Tidal energy technologies, Energy from waves. Hydrogen Energy: History of hydrogen energy-Hydrogen production methods-Electrolysis of water, uses of hydrogen as fuel. Bio-Energy Energy from biomass – Sources of biomass – Conversion of biomass into fuels – Energy through fermentation – Pyrolysis, gasification and combustion – Aerobic and anaerobic bio-conversion – Properties of biomass –Properties and characteristics of biogas.	Energy from biomass – Sources of biomass – Conversion of biomass into fuels	01	YES	Seminar	01	YES	

ANNUAL CURRICULAR PLAN I/III/V

YEAR: **2019-20** PAPER: **III** NAME OF THE LECTURER: **Dr A P V Appa Rao Sri J Rama Mohan& GS Devi**

Month & Week	Hours available	Syllabus Topic	Additional Inputs / Value Additions		Curricular	Activity			Co-Curric	ular Activity	
				Activity	Hours Allotted	Whether Conducted	If not Alternate Date	Activity	Hours Allotted	Whether Conducted	If not Alternate Date
June	16	Aberrations: Introduction to Chromatic aberration — calculation of longitudinal chromatic aberration of a thin lens — achromatism for two lenses (a) when in contact and (b) when separated by a distance — achromatism of a camera lens — Introduction to Spherical aberration — minimization of spherical aberration — Coma — Astigmatism — Curvature of field — distortion.		Matrix methods in Paraxial Optics.	10 05	YES		Assignment I			
July	16	Interference Principle of superposition – coherence—conditions for Interference of light. Interference by division of wave front: Fresnel's biprism – determination of wave length of light Determination of thickness of a transparent material using Biprism – change of phase on reflection – Lloyd's mirror experiment. Interference by division of amplitude: Oblique incidence of a plane wave on a		Interference	15	YES		Assignment II	1 hour	YES	

		thin film due to reflected and transmitted light (Cosine law) – Colours of thin films – Non reflecting films — Interference by a film with two non-parallel reflecting surfaces (Wedge shaped film) – Determination of diameter of wire. Newton's rings in reflected light with contact between lens and glass plate – Determination of wave length of monochromatic light – Michelson Interferometer – types of fringes – Determination of wavelength of monochromatic light and thickness of a thin transparent plate.				Seminar Assignment III	1 Hour	YES	
August	16	Polarization:- Polarized light: Methods of Polarization, Polarizatioin by reflection, refraction, Double refraction, scattering of light — Brewsters law — Malus law — Nicol prism as polarizer and analyzer — Refraction of plane wave incident on negative crystals (Huygen's explanation) — Quarter wave plate, Half wave plate— Optical activity, analysis of light by Laurent's half shade polarimeter. Lasers: Introduction — Spontaneous emission — Stimulated emission — Population inversion. Laser principle— Types of Lasers — He-Ne laser — Ruby laser — Semi conductor laser — Laser characteristics — Applications of lasers.	Polarization	08	YES	Seminar	1 hour	YES	
September	16	Fiber Optics and Holography:							

		Introduction – Optical fibers – Types of	Fiber Optics &			Assignment-	1 hour	YES	
		optical fibers – Step and graded index	Holography	05	Yes	IV	111001	1.23	
		fibers –Fiber material – Principles of	. ioiogiapiiy	03	1.03				
		fiber communication (qualitative							
		treatment only) advantages of fiber							
		communication. Basic Principle of							
		Holography and its applications. Gabor							
		hologram.							
		Diffraction:							
		Introduction – Fraunhoffer diffraction:-							
		Diffraction due to single slit– Limit of	Diffraction	08	YES	Assignment	1hour	YES	
		resolution – Fraunhoffer diffraction due				V			
		to double slit – Fraunhoffer diffraction							
		pattern with N slits (diffraction grating).							
		Resolving Power of grating –							
		Determination of wave length of light in							
		normal and oblique incidence methods							
		using diffraction grating.							
Octobor	0	Fresnel diffraction Fresnel's half	Frachal	08	YES				
October	8		Fresnel Diffraction	Uδ	153				
		period zones – area of the half period zones –zone plate – Comparison of zone	חווומכנוסוו						
		plate with convex lens – Phase reversal							
		zone plate – difference between							
		interference and diffraction. Distinction							
		between Fresnel and Fraunhoffer							
		diffraction.							
		aaction.							

ANNUAL CURRICULAR PLAN I/III/V

YEAR: **2019-20** PAPER: V NAME OF THE LECTURER: **Sri J Rama Mohan, Sri P Ramakrishna Rao & ASS Jyothi**

Month & Week	Hours available	Syllabus Topic	Additional Inputs / Value Additions			Co-Curricular Activity					
				Activity	Hours Allotted	Whether Conducted	If not Alternate Date	Activity	Hours Allotted	Whether Conducted	If not Alternate Date
June	12	Electric field intensity and potential: Gauss's law statement and its proof- Electric field intensity due to (1) Uniformly charged sphere and (2) an infinite conducting sheet of charge. Electrical potential — equi potential surfaces- potential due to i) a		Electrostatics	8	YES		Assignment I	1	YES	
		point charge, ii) charged spherical shell .		Dielectrics	6	YES					
July	12	Dielectrics: Electric dipole moment and molecular polarizability- Electric displacement D, electric polarization P – relation between D, E and P- Dielectric constant and susceptibility. Boundary conditions at the dielectric surface.		Capacitance	10	YES		Assignment II	1	YES	
August	12	Electric and magnetic fields Biot-Savart's law, explanation and calculation of B due to long straight wire, a circular current loop and solenoid — Hall effect — determination of Hall coefficient and applications. Electromagnetic induction Faraday's law-Lenz's law- Self and mutual		Magnetostatics	10	YES		Assignment- III	01 Hour	YES	

		industrial of the state of							
		inductance, coefficient of coupling,							
		calculation of self inductance of a long							
		solenoid, energy stored in magnetic field.							
		Transformer - energy losses - efficiency.							
September	12	Alternating currents and electromagnetic	Moving charges			Seminar	02	YES	
		waves	in electric and	8	YES		Hours		
		Alternating current - Relation between	magnetic fields						
		current and voltage in LR and CR circuits,							
		vector diagrams, LCR series and parallel							
		resonant circuit, Q –factor, power in ac							
		circuits.	Electromagnetic	4	YES	Assignment	01	YES	
		Maxwell's equations :Idea of displacement	Induction			IV	Hour		
		current - Maxwell's equations (integral and							
		differential forms) (no derivation),							
		Maxwell's wave equation (with derivation).							
		Pointing theorem (statement), production							
		of electromagnetic waves (Hertz							
		experiment).							
October	6	Basic electronics:	Electromagnetic	6	YES	Assignment	1	YES	
		PN junction diode, Zener diode, I-V	Induction			V			
		characteristics, PNP and NPN transistors,							
		CB, CE and CC configurations – Relation							
		between α , β and γ - transistor (CE)							
		characteristics, Transistor as an amplifier.							
		Digital electronics:							
		Number systems - Conversion of binary to							
		decimal system and vice versa. Binary							
		subtraction (2's complement methods).Laws							
		of Boolean algebra - De Morgan's laws-							
		statement and proof, Basic logic gates,							
		NAND and NOR as universal gates,							
		exclusive-OR gate, Half adder and Full							
		adder.							
1						l		J	