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"PHYSICS
(MECHANICS, WAVES AND OSCILLATIONS)
UNIT - | : MECHANICS
1. MECHANICS OF PARTICLES
LONG ANSWER QUESTIONS

1. Define elastic and inelastic collisions? Derive the equations for the final velocities of the particles
in a two dimensional elastic collision?

Semester - 1

2. Describe equatlon of motion of a system of variable mass?

3. Give the theory of motion of a Rocket. Derive equation of motion of Rocket
Derive an expression for Rutherford’s scattering cross section.,

SHORT ANSWER QUESTIONS

5

State Newton's laws ? .
Explain the law of conservation of angular monientum?
Explain the conservation of Energy? '

Write short notes on multi stage rockets?

O 0N

Explain the concept of Impact parameter and scattering cross-section.
SOLVED PROBLEMS

10. A rocket of mass 40 kg has 360 kg of fuel. The exhaust velocity of the fuel is 2 km/sec.
Find the velocity gained by rocket when rate of consumption of the fuel is 4 kg/sec

11. Arocket when empty weight 5000 kg and is filled with 40,000 kg of fuel. The exhaust velocity of
the burnt gas is 2 kms™. Find the maximum velocity attained by the rocket.

12. Arocket of mass 20 kg has 180 kg of fuel. The exhaust velocity of the fuel is 1.6 km/sec. Calculate
the minimum rate of consumption of fuel so that the rocket may rise from the ground. Also
calculate the ultimate vertical- speed gained by the rocket, when the rate of consumption of the -
fuel is 2 kg/sec.

13. An alpha particle of energy 5 Mev approches a copper nucleus (Z = 32) -in the head on
collision. Calculate the distance of nearest approach.

14. A 0.03 kg mass travelling at 0.08 m/s makes an elastic vtrlth a 0.05 kg mass at rest. Find the speed
of each mass after .

15. A ball moving at a speed of 2.2 m/sec Strikes an identical stationary ball. After collision one

ball moves at 1.1 m/sec. at 60° angle with the original line of motion. Fmd the Veloc1ty of the
other ball.

16. o Particle from a polonium source strike a thin gold foil of thickness 4x70~7m . Most of the

. d '
particles scatter in the forward direction but [—6’ 17%10° 0 } fraction of ¢ -particles are found to be

scattered by more than 90°. Find the cross section of this type of scattering if the number of gold
- nuclei per unit volume is 5.9 x 10%* per m’,

A particle of mass Skg moving with velocity of 10m/s collides with another partxcle of mass 10

kg moving in opposite directions with a velocity of 20m/s. During collision they stick together.
Find the common velocity.

2., MECHANICS OF RIGID BODIES

LONG ANSWER QUESTIONS
- Derive equation of motion of a rigid rotating body.

17
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Semester - 1 ) 9 . PHYSICS (E.M.)
2. Derive Euler equations of rotational motion for a rigid body fixed at one point. Prove the law of
conservation of K.E and angular momentum from them.

3. What is a symmetric top? Derive an expression for the precessional velocity of a symmetric top?
4. Derive an expression for angular momentum and inertia tensor.
SHORT ANSWER QUESTIONS

Write short notes on gyroscope?

Explain the precession of equinoxes and its consequence?
7. Explam the precession of atom and nucleus in magnetic ﬁcld ?

SOLVED PROBLEMS

8. A car develops 75 KW power when rotating at a speed of 1000 rpm. What is torque acting ?

A sphere of mass 2.5 kg. and diameter 1m rolls without shppmg with a constant velocity of
2 m/s. Calculate its total energy.

10. A ballet dancer spins about a vertical axis at the rate of 1 revolutlon per second with her arms out
stretched. When her arms folded her moment of inertia about the vertical axis decreases by
60%.Calculate the new rate of revolution.

11. The speed of a particle moving a circle of radius 20 cms increase at the rate of 10 cm/sec?. If the
- mass is 200 gms, find the torque on it.
12. A 500 gm stone is revolved at the end of a 0.4 m long strmg at the rate of 12 5-rad/s. What is its
angular momentum. . . :
13. The kinetic energy of metal disc rotatmg at a constant speed of 5 revolut1ons per second is 100
Joules Find the angular momentum of the disc. ) :
14. A circular disc of mass 100 kgand radius 1 m is mounted ax1ally and made to rotate. Calculate the
K.E it possesses when executing 120 rotations per minute. ,
15. A fly wheel when slowed down from 60 rpm to 30 rpm loses 100J of energy. What is its moment
of inertia? '
UNIT - 1l : 3. CENTRAL FORCES
'~ LONG ANSWER QUESTIONS
. - Discuss the conservative nature of central forces. ,
2. Derive the equation of motion of a particle under a central force?
State and prove the Kepler's laws of planetory motion?
SHORT ANSWER QUESTIONS

What is a Central Force? Give two Examples
Prove that the Areal Velocity is constant under the 1nﬂuence of central force ?

9

What are the characteristics of central force ?
Prove that conservative force as a negative gradlent of potential energy ?
Show that the curl of a central force is zero ?
Defive Newton's law of gravitation from Kepler's law. ,
10. Explain about geostationary satelite and found its height from the surface of the earth (radius of
the earth R = 6.4x 10° m).
11. Discuss about Motion of satellites ?
SOLVED PROBLEMS
12. If earth is at one half of its present distance from sun, what will the number of days in a year.

13. Estimate the mass of the sun assuming the orbit of earth around the sun is a circle. The
distance between the sun and the earth is 1.49 x 10'!m,

14. Show that the force F = (y*—x?) i+ 2Xyj is conservative.

© P N L s
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10 : PHYSICS (EM.)
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15. 1f the radius of the carth suddenly changes to half the present value without any change in mass.
What would be the change in the duration of the day?

10 IO
16. The maximum and minimum distances of a comet from the sun (u‘c 1. 6 x 10 ml'mdﬂ? x 10 ;
respectively. If the speed of the comet at the nearest point is 6 x 10° m/scc. Calculate the spee at
the farthest point.

UNIT - Il : 4. RELATIVISTIC MECHANICS
LONG ANSWER QU]CS'[‘I()NS

1. Describe Michelson - Morley experiment and explain the importance of its result?

2. State Postulates of special theory of Relativity ? Derive Lorentz transformations.
3. Derive Einstein’s mass-cnergy relation., (Or)

Derive Equivalence of mass and encrgy.
4. Explain variation of mass with velocity ?
SHORT ANSWER QUESTIONS
S, Prove x*+ y* +2*= ¢ is invariant under menlz txamfm mations.
6. Write short notes on lmg,th contraction.
7. Write Qhoﬂ notes on Tnm Dilation, ’
SOLVED PROBLEMS

8. Ifrod travels with a speed 0.6¢ qlong its length claculate the per centage contraction.

9. Arocket ship is 100 metre long on the ground. When itis in flight, its length is 99 metres to an observer on
the nxound What is its speed?

10.  Aclock showmg, correct tlme when at rest and loses 2 hours in a day when it is movmg What is its
velocity?

11. At what speed the mass of an Ob_]CCt will be double of its value at rest.
2. Ifthe total energy of a particle is exactly thrice its rest energy, What is the ve1001ty of the particle?
13. A particle is moving with 90% of the ve10c1ty of light. Compare its relativistic mass with rest mass.

14, With what speed-shoult it be moved relative to an observer so that it may appear to lose 4 minutes in 24
‘ hours.

- oNnir-v
5. UNDAMPED, DAMPED AND FORCED OSCILLATIONS
LONG ANSWER QUESTIONS
What is simple oscillator? Give the equation of motion of a 51mple oscillator and its solution?

2. Define damped harmonic oscillator. Derlve the equatlon of Motlon of damped harmomc
oscillator. Discuss different cases.

3. Define forced harmonic oscillators. Derlve the differential’ equatlon and give its solutlon
Discuss different cases.

SHORT ANSWER QUESTIONS
What is simple-harmonic motion? What are its physical characteristics ?
Explain the amplitude and sharpness resonance.
Define quality factor. Explain. \

Write short notes on logarthmic decrement of the oscillator.
Define relaxation time? Derive expression for it?

SOLVED PROBLEMS

S R

' -T
The displacement of a particle making S.H.M is given by x = 0.5 cos (1 Ot +§) calculate (1)

~amplitude, (2) Frequency, (3) Phase, (4) Displzicemcnt after 1 sec.
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Semester - 1 11 | PHYSICS (EM.)
10. A particle vibrates simple harmonically with a period of 2 sec. Find the amplitude if its

max. velocity is 10 cm/s.

11. The amplitude of seconds pendulum falls to half of its initial value in 150 sec. Calculate the
Q - factor.

12. The Q value of a spring loaded with 0.3 kg is 60. If it vibrates with a frequency of 2 Hz.
Calculate the force constant and the mechanical resistance.

13. The quality factor Q of a sonometer wire is 2 x 102 On plucking, the wire emits a note of
frequency 120 Hz. Calculate the time in which the amphtude falls to (1/e?) -of the initial
value.

6. COUPLED OSCILLATORS
~ LONG ANSWER QUESTIONS

1. Obtain the normal mode and normal coordinates of two identical pendulums with their bobs

connected by means of elastic massless spring ?

2. Obtain the equation of motion, considering the case of N- coupled oscillators and derive the
equation for the frequency of the system ?

SHORT ANSWER QUESTIONS
What are coupled oscillators and give exampl‘es iy
Derive the wave equation of N - coupled oscillators ?
SOLVED PROBLEMS

5. Sodium chloride molecule has a natural vibrational frequency =1.14 x 10 Hz. Calculate
the interatomic force constant. Mass of sodium atom = 23 a.m.u. Mass of cI atom = 35 a.m.u.

(1 a.m.u. = 1.67 x 10¥kg).
‘ ' UNIT-V
7. VIBRATING STRINGS

LONG ANSWER QUESTIONS '
1. Derive wave equation of Transverse wave propagation along a stretched string and give

it’s general solution _
" 2. Describe the modes of vibrations of a stretched strings clamped at both ends. What are

overtones?
3. Derive the expression for velocity of a transverse wave along a stretched strmg"

- SOLVED PROBLEMS
A string of length 8 m fixed at both ends has a tension of 49 N and mass of 0.4 kg. Find the

4.
speed of transverse wave.

5. A steel wire of diameter 1 c.m. is kept under a tensmn of 5 KN. The density of steel is 7.8 g/ ~
c.c. Calculate the velocity of the transverse wave. ’

6. A steel wire 50 cm long has mass of 5 gms. It is stretched with a tension of 400 N. Find the
frequency of the wire in fundamental mode of vibration.

7. Two similar wires are under same tension. When tension in one wire increased by 6.09% and
the two wires vibrate simultaneously, 6 feats are heard per second. Find the original frequency
of the two strings.

8 The fundamental frequency of vibration of a stretched string of leng'th 1mis 256 Hz. Find the

frequency of the same string of half the original length under identical condition.

8. ULTRASONICS
LONG ANSWER QUESTIONS

1. Write an essay on the production of ultrasonics.
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SHORT QUESTION ANSWERS
9. What are ultrasonics 2 What are their properties ?

3. What are the methods for the detection of ultragonics?

4, Write short notos on Acoustic grating,.

H. Write a note on applications of ultrasonics,
6. Explain about SONAR,

.SOLVED PROBLEMS _
7. A magnetostriction oscillator has frequency 20 kHz. If it produces sound wave of velocity
6.2 X 10" m/s, find the length of ferrite rod. ‘

8. Caleulate the frequency of fundamental note emitted by a piezo electrtic crystal. Use the
following data,

9. A quartz erystal thickness 0,001 metre is vibrating at resonance. Calculate the fundamental
frequency. Given'Y for quartz = 7.9 x 10" newton/m? and p for quartz = 2650 kg/m®.

10. A piezo electric crystal has a tlm-kmss 0.002 m. If the velocity of sound wave in crystal
is 5760m/s, calculate the fundamental frequency of crystal.

11. Caleculate the capacitance to produce ultrosonic waves of 10° Hz with an inductance of
1 henry.
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UNIT - I : MECHANICS

1. MECHANICS OF PARTICLES

LONG ANSWER QUESTIONS

Q. 1. Define elastic and inelastic collisions? Derive the equations for the final velocities of the

particles in a two dimensional elastic collision?

Ans : Elastic collision :

I When the kinetic energy of the particles remains conserved in the collision, the u)lhsmn is

said to be clastic,

2. The collision between atomic, nuclear and fundamental particles are usually clastic.

Inelastic collision :

When the kinetic energy is changed in the collision, the collision is said to be inclastic.

2. Collisions between gross bodics are always in elastic.
Elastic collision in two Dimensions : As shown in
fig, let a particle of mass m moving with velocity u, collide

with a particle of mass m, at rest (u, =0). Let afler collision, -
the particle of mass m, is deflected or scattered at an angle x"-‘-'@'

6, with the original direction. Similarly, the particle of mass

m, moves in a direction which makes an angle 0, with the
original direction. Further let v, and v, be the velocitics of
masses m, and m, respectively al‘lcn collision.

Applymg, the law of conservation of linear momentum along X-axis we have

mpu, +0=m, v, cos +m,V,coso,

Applying the law of conservation of lincar momentum along Y-axis, we have

0+0=m, v, Sing, —m,v,Sino,.
m, v, Sing, =m, v,.Sing,.
According to the law of conservation of kinetic energy

1 1 |
5 m u’+0= 3 ml'v;’ 3 m,v,*

We have m = m, ‘
Framer (1) u, = v, cos 6, + Vv, cos 6,

Framer (2) v, Sing, = v, Sin0,.

Framer (4) (u, — v, cos ;) =V, cos 0,
Squaring both sides we l:mvc eq (4)

(2 + v,? cos? 6, — 2u, v, cos 0 ) = v,? cos? 0,
Squaring both sides of eq (5) we have

v;? Sin?6, =v,? Sin*0, "
Adding eqns (6) and (7) we get
ul+v,2—2u, v, cos 0, =2

Fromeq(3) u’=v?+v}? (0() u?-vi=v,?

Y] ¢ or
4
'7’//
:m '\’zé %\iﬁ. X
w O & 2 o
Y h
Fig
cereerenenns (1)
............ )
............ (3)
.......... N
Wit (5)
............ (6)
v, (7)
............ (8)
INEUR '(9)

SUIUETREES—————
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0. 2.

mass is moving with velocity V as seen from a patticular

_ Y]
) ) T - e
reference at any instant. At a latter instant t + A/ a mass _ W—' -— o
o : M
AM has been ejected from the system and its centre of mass :
moves with a velocity u as seen by an observer. o

write.

Subtracting eq (9) from eq (8) we get
2v?=2u, v, cos 6, =0

v, —u, cosd =0 (or) v, =u, cos
Thus v, can be calculated.

Fromeq(3) v, =u?-v?

v,2 = u? —ulcos’0 = u?’(I-cos’ 0;)= u,? Sin® 6;.
(or) vp=aosingp 0 0t e o i e T e (b)
from eq (a) and (b) it is clear that v, and v, are perpendicular components of u, (or)

0, + 0, =90°

V
Fromeq (2) Sing, = [’I;LJ Siné, .
2

Thus 6, can be calculated.

Describe equation of motion of a system of variable mass?

Ans : Fig shows a‘system of mass M whose centre of

Now the system mass is reduced to M — AM and the velocity Fig

of the the centre of mass of the system is vchanged V+ AV .

The system represents a motion like a rocket.
From Newton's second law

_ B L L PR
Fexl— dt ch! - At‘— At .
Consider both the parts of masses Apfand Af—AMs as forming one and the same system we can
F oo Prmh (M-AM) (V+AV) + AM)-[MV]
ext At ‘ 'At o (1)
F M-A—V-—VAM—AIAM+MAM ‘('))
AL At At AL e -
: AV dv AM | Am
If At approachf;d zero, So ~ approached " and A S replaced by — A=
eq (2) becomes,
dv dM dM K d aM
F =M—+V — -y — T == (MV)-u— 3
- 7 7 " (or) F_ o (MV )-u = | 3)

eq (3) expresses Newton's second law as applied to a body of variable mass.
eq (3) can also be expressed as

dv dM dM dv dM
ext dt di di chl M a + (V ll) "

v _p dM
(Or) M7=l‘(“’+(l‘_v)7 (OI‘) Md—V=]7 +F

"
d[ ext reaction®
L
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Semester - 1 ‘ 15 PHYSICS (1LM.)
Q. 3. Give the theory of motion of a Rocket. Derive equation of motion of Rocket, |

Ans : Rocket is an example for mass variable system, When the fucl is burnt, gases are produced.
These gases will escape through a fine nozzle, as a result a thrust is produced. Hence the rocket mnch.
Thex:e are solid fue] rockets and liquid fuel rockets. Gun powder is used as solid fuel, Liquid hydm;wil;
or liquid paraffin is used as liquid fuel. The motion of the rocket can be explained by Newton’s lh.;rd
law of motion. : |

Let Mbe the mass and ¥ be the velocity of rocket at any instant with respect to a Laboratory frame
of reference. Let dM be the mass of the gas cjected in a time df. Let w be the velocity of gas jet with
respect to rocket. ‘

= The relative velocity of gas Jet with respect to lab frame =V, =V «=u

: —dM
Rate of change of momentum of Jet coming out of the rocket =~(77‘(V ~11)
[¢

. dM
- Thrust acting on the rocket to move it forward =7(V ~u)

The Net force acting én the rocket in the forward direction = %%/I—(V —u)= Mg B (1
From Newtons second law? the force on rocket =%(M V ) ........ (2)
- From (1) and (25 %.(MV.)= dd—Aj(V.—.u)—Mg ' ' | o (3)
' M%+Vd3f =Vd3j(‘—z¢dcf'—Mg M%—=—M%\Z~Mg
'%:"ﬁ“‘;—j‘f—g dV=—u%—:gdt ........ @)

Let M), is initial mass and ¥, be the velocity when 7 = 0
' v M r ‘
' dM
Integrating equation (4) _[ av = J. JYa] Idl
. Vo My 0

¢ M, o 2 , M, '
V—Vozﬂl]o‘ge[—-ﬁJ—gt . ..V-Vﬁuloge(v]—gl ........ 5)

This equation gives the velocity of the rocket at any instant 7.
Special Cases : '

‘ o ' ' (M,

1) If the value of force of gravity (g) is ignored then V=V, +ulog, §Ya
- - (M,
2) If the initial velocity of the rocket is zero, then V =ulog, M

e y
Or V = 2.3024 log ‘0[7")

Q. 4. Derive an expression for Rutherford’s scattering cross section.
Ans : Consider an atom of an element of atomic number z.

"Let Ze be the charge of Nucleus. Let m be the mass of a. - particle
and 2e be the charge. It is approaching the nucleus with a velocity
'V, along the direction pM. In the absence of repulsive force, the o.—
particle moves in a straight line path. But due to repulsive force it
follows a parabolic path with nucleus at its foci. pQ and p'O are
assymptotes of the hyperbola. If the a.— particle is directed straight
towards the nucleus ( i.e p = 0), the o — particle is stopped at a
distance b. The value of b can be determined by using conservation

of energy.

Fig
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m = mass of o - particle ; ¢ = scattering angle ; Ze = charge of Nucleus; 2e = charge of o — particle;
p = lmpact parameter

1 ze
Electrostatic potential due to Nucleus at a distance b is 7~ < ('17)

Ze %) = 2Z€2
. The P.E of « - particle at a distance ‘b’ from the Nucleus = ine, b( c)‘ dne,)b

. | 2.
when the « - particle is momentarly stopped at a distance b, its K.E. i.e 2 e 18 totally converted
into P.E. '

? 27"
Somlyt o= e N
2 dr ey b > a-particle
7 —@—>—---—<¢ D
7 (V)
Ze? p--mom R ™
b —_— p=0and¢=180° n
nTEymv,” i
) Zel
SOV =
0 me, m e (A)

Consider the case i.e when p=#0 in such case, the o - particle will be deflected through at

anangle ¢. It travels along the path pAp’. Let ¥ be the velocity of the a — particle at the vertex 4 of

hyperbola. The velocity can be calculated by the law of conservation of angular momentum,
Angular momentum of o - particle at P =mV, p

Angular momentum of o — particle at A = m V(NA)= mVd

,/
somVyp=mvd =L )
d
Z 0 y . l / 2 7 3 1 ‘ 2
K.E. of a - particle at p =—mV, K.E. of o - particle at 4 = EmV
— . . . (Zej(oe)_ 2Z(?2
P.E. of a — particle at 4 = dne,\d /) e, d
Applying the law of conservation of energy
3 Al 2: ’2 2 ) Z 4 2
lml"u‘ =iml"‘ e ¥,) =v? = vi=p? S,
2 2 dne, d ne, md T €, md
) » b L B DR zé? 2 2 b '

rdop iyt sbVT = V2=r31-=

] Vo 70 ‘ [ 0 Te, m) 0 ( d) ........ 3)
Substituting the value of V' from equation (2) in equ. (3)
et e b) b p° (d—ﬂ" (d-b)
=== Prm1-2 === ST L

d- 0 d d* d d*® d P _ ds & @)
The value of d can be calculated as follows bythe property of hyperbola

J .

Eccentricity = e = sec 7)% =e From the diagram ON + O4 = d

ON i 1 : i
5d=0N+~—=oNb H_on o o g o M
¢ *+7)=ON(I+cos6)  Fromthe a% NOM; Sin0="5

1)
sin @

But ON =
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R 0
“d'—.sinO(I_H:OS 0)2‘—‘—"1‘,‘* ><2(:0!s'2"'2'-"Ilcnl—(21

2sin = x cos —
2
“ple PCOl-g(p col,-g—— I;)
P2=pzcot29—bc to 2 2 20) 0
. 2 © 53 S cot. A=~—pbcol /

2

0 .
bcot~2- = pcotz%—‘p

. .0
pcot 5- P 0 0 cos LA sin 4
b=———0—=p[cot——7'an—}=p -
cot — 2 2 sin—  cos —
2 2 2
"cos? %—sinz % cosO ”' p
b=p =2p——=2pcoll = 2pcot(——:—J .
sin?.cosg sin 8 2 ;27%5”’
Tani = 00 (5)
| 93 | . . L. - e REMETS AR
Substituting the value of b from equ (1) in equ. (5)
o _ ze®
Tan— = : R LA R e (6)

2 2rne,mu’p

Rutherford’s scattering cross section :

Let 7 be the no. of atoms per unit volume of the scatterer
of thickness 7. The scattered particles are striking the screens.
Let » be the distance of the screen from scatterer. Let § be the H
total no. of particles that strike the unit area of the scatterer. Let =
us imagine that the o - particles having an impact parameter p

are scattered through an angle ¢ .

Fig 5

- The probable no. of o. - particles coming within the distance of an impact parameter striking per
unit area = np°ntd

The no. of o. — particles scattred between angles ¢ and (¢-+dd) is 2mpntOdp.

Solid angle between ¢and (¢+dd)= 2nsinddy

- Scattering cross-section

No .of particles scattered _int othe solid angle per unit time
- Incident int ensity

But the no, of scattered particles into solid angle between ¢ and (¢ + d) = Number of incident
.~ particles having impact parameters lying between p and p + dp
2n sin ddpol = -2npdpl

The —ve sign indicates that as p increases ¢ decreases.
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—2npdpl _ -pdp
" 2asin ¢d¢I . sin¢dd
ze? (b 0]
p= ————=cot —=—cot —
But fr01.n 6) P= PT— oLy =504
dp= —cosec2i X i do= cosec .d¢
2 2 2
—(—ll) cot L (:2) cosec? gl.dd) b? 1
2 2\ 4 2 ==
o= 16 (,sin" g)
2sin42) ¢ dd) 2

Substltutmo the value of b from equ @))

ze

o= :
_ 1672 ¢,> m*v,* sin4%
This is the formula for Rutherfords scattering cross-section. _
SHORT ANSWER QUESTIONS
0. 5. State Newton's laws ?
Ans : Newton's First law : "Every body continues in the state of rest or of uniform motion in a
straight lme unless an external force acts on it to change that state".
Newton's Secondlaw : "The product of the mass 7 of a mass point by its acceleration a is equal to
the force acting on it i,e.
F=ma
Newton's thirdlaw : "To every action, there is always an equal and opposite, reaction".
Q. 6. Explain the law of conservation of angular momentum? :
Ans : The law of conservation of angular momentum states that if no éxternal torque acts an a
body rotating about a fixed point, the angular momentum of the body remains constant.
When external forces acts on the particles they exert torque on them. Now the angular momenta
of the particles change with time. The rate of change of angular momenta is given by

@z 'i(”'xpi) - @Xpi"‘r'xﬂ} = erxgp_l

dt “Fdt’ | dt bodt ' dt
. ) ' dL “n ) n
because %XPF VixmV; =m,(V;xV;) =0 Ez Zrsz,- =ZT: =Ty,
: i=] i=
dp, dL
( F; 2%) IfT, = 0 —=0 (or) L =Constant.

0. 7. Explain the conservation of Energy?
Ans : According to law of conservation of energy.

"Energy can neither be created nor destroyed". It can be transformed from one form to another
form.

Let us consider the case of a body of mass m at a height h above the ground.
At point A kinetic energy of the body is zero. Potential energy is mgh
at point B kinetic energy of the body is mgx.
Potential energy is mg (h — x), T.E = mgh.
At point c. Kinetic energy is mgh potential energy is 0.
T.E =mgx

Atall the points T.E remains constant. So "The total energy in any system, always remains constant.

e
e
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Q. 8. Write short notes on multi stage rockets?

Ans : The motion of a rocket is based on the law of conservation of linear momentum,

Generally the velocity attained by a rocket is approximately 4 km/s. To obtain higher velocitics
multistage rockets are used. Generally a multistage rocket has 3 stages. The first stage of the rocket i
used to acquire the acceleration of the rocket, When the fuel of first stage is completed, it detaches from
the rocket. The velocity at this stage becomes the initial velocity of the second stage, The second stage
starts its functioning. When the fuel of the second stage is completed it detaches from the main rocket,
Finally the third stage rocket starts.

Q. 9. Explain the concept of Impact parameter and scattering cross-section.

Ans @ Impact parameter : Consider a positive particle,
like a proton or an a -particle approaching a massive nucleus N
of an atom, as shown in fig,

Due to coulombic force of repulsion, the particle follows,
a hyperbolic path AB with nucleus N as its focus. In the absence
of the repulsive force. The particle would have followed the

straight line path Ac. As shown in fig, P is the perpendicular ‘
distance from the nucleus N to the original direction AC of the Fig
particle. The distence (NM = P) is ¢alled the impact parameter.

Thus impact parameter is defined as the closest distence between nucleus and positive charged
particle projected towards it. '

Scattering cross-section : When o - particles are projected into
a thin metal foil. They are deflected or scattered in different directions.
Let N be the incident intensity. Suppose dN be the number of particles
scattered per unit time into solid angle dw located in the direction
6 and ¢ with respect to the hombarding direction.

The ratio dN/N is called scattering cross section. Thus it is defined as in a given direction the ratio

of number of scaltcrmg> particles into solid angle dw per unit time to the incident intensity.

SOLVED PROBLEMS
10. A rocket of mass 40 kg has 360 kg of fuel. The exhaust velocity of the fuel is 2 km/sec.
Find the velocity gained by rocket when rate of consumption of the fuel is 4 kg/sec.

Solution :
M,
Var =Vy +ulog, (“/T/; J gl

A ) 5 9.8
Initial velocity V,= 0 and g - 0.8 mls’ = T km/s?
Exhaust velocity of fuel u = 2 km/s.
(Mass of rocket + Mass of fuel) M, = 40 + 360 = 400 kg.

IM
Rate of consumption of fucl (_(-Itﬂ = d ke/s,

At this rate the time taken to burnt the whole fuel of mass

260
360 ks is 1= w; == 90s

Mass of the rocket M = 40 kg

e X () 20 3,7 2hm /8
1000 { '

V=00 .?[4)‘1"’, kool
40

400 J 0.8

s T
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11. A rocket when empty weight 5000 kg and is filled with 40,000 kg of fuel. The exhaust velocity
of the burnt gas is 2 kms™'. Find the maximum velocity attained by the rocket.

Solution : Weight of the empty rocket (M) = 5x 107 kg
Weight of the Rocket + Fuel (M) = (S x 10°+ 40 x 10°) kg = 45000 kg
Exhaust velocity (u) = 2 kms '= 2000 ms ' ’

If initial velocity is zero, the maximum velocity of the rocket.

< 10

M, M, sy ( 45000 J’ )
= y | = 3 9909 ) _—
Vv —ulr),(,,.( v J—Z..?().?uln;,( v J — 2303 » 2000 » 0&’10» 5000

= 2303 » 2000 x log,,” = 2.303 x 2000 x 0.9542 = 4395.04 ms”!
v =4.395kms'

12. A rocket of mass 20 kg has 180 kg of fuel. The exhaust velocity of the fuel is 1.6 km/sec.
Calculate the minimum rate of consumption of fuel so that the rocket may rise from thegro u{id.
Also calculate the ultimate vertical speed gained by the rocket, when the rate of consumption
of the fuel is 2 kg/sec. :

Solution : The minimum rate of consumption of fuel so that the rocket may rise from the ground may
be calculated as follows. '

Magnitude of thurst = Weight of rocket

dM '
u-d—t— Mg

dM Mg  200x98
dt  u  16x1000

or

=1.225 kg/sec.

= : 18 . . ’
Total time for consumption of all fuel = ——2—0-= 90 secs since the rate of consumption of fuel is 2

kg/sec. Now

M 2
Vinax =ulog, =—A4_0""gt =16x10° nge%Ooo-

- 9.8 X 90
= 1.6x10°x2303-882  =2802.8 m/sec = 2.8 km/sec.

13. An alpha particle of energy 5 Mev approches'a'copper nucleus (Z=32) in the head on
collision. Calculate the distance of nearest approach.

Solution : Energy of the o - particle
E=15Mev=>5x10%x 1.6 x 10 "' Joules.
Atomic number of copper Z = 32.
Distance of nearest approach = b

_ ZeZe 0 27e?
- 4dney (E) ~41:e0 K

_9x10° x2x32x(16x107" )?
5x10% x 16 x 1071°

=184.32 x 10-16m

14. A 0.03 kg mass travelling at 0.08 m/s makes an elastic with a 0.05 kg mass at rest. Find the
speed of each mass after . ‘

Solution : Given u, = 0.08 m/s, m, = 0.03 kg, u, =0 and rﬁz =0.05 kg
Here we have m,zll+m2u2=le,+m2V2
S 0.03x0.08+0.05%x0=0.03 v, +0.05v,

Solving we get 3V, + 5V, = 0.24 L PRI S PE e e3)]
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~
o

Vo =V
Sl WL

From Newton’s experimental law Wy -1t
. U — U;
0-008
3v,—-3v,=0.24 ‘ b B 2)
From ern’s (1)be (2), solving , We get '
V,=-0.2 m/sec V,=0.6 m/sec.
A ball moving at a speed of 2.2 m/sec. Strikes an identical stationary ball. After collision

one ball moves at 1.1 m/sec. at 60° angle with the original line of motion. Find the velocity of
the other ball.

U,

Solution : Let m be the mass of each ball and u be the

" initial velocity of the first ball. Let V, and V, be the - ,"”‘

final velocities of the balls 1espect1vely after collision O
as shown in fig. Fig \/®<;
% L v

Applying the law conservation of momentum
also original direction of motion have

v
D
(e}

o

mu = mV cos 60° + mV,cos 0 of u="V,cos 60°+V,cos 6
22=11(0.5) +Vcosd ( ~.cos60° =0) .
. V,c0s0=2.2-0.55= 165 [ L R 1)
Now applym(7 conservation of momentum perpenducular to the orlgmal direction of motion, we have
0 = mV, sin 60°—mV, sinf ~or . 0=V,sin60°-V,sinf
or V,sin@ =1.1(0.866) ’ ( sin 60°=0.866) -
or V,sin6 =(0.953) - ‘ ' » S 3}

16.

Squaring and adding egs. (1) and (2) we get
V7= (1657 +(0.953)

- vy = \'[ﬂe,s)g +(o.953)2 ] =19 m/sec.

0953 '
Dividing eq. (2) by eq. (1) we get, tan = ST 0.577 0 =tan™ (0.577) = 30° .

a Particle from a polonium source strike a thin gold foil of thickness 4x10~ m . Most of the
1 e
particles scatter in the Sforward direction but _6 7 7—_. 10° Jraction of o -particles are found to

be scattered by more than 90°. Find the cross section of this type of scattering if the number of
gold nuclei per unit volume is 5. 95 10% per n’.

Solution : Given thickness of scattering material t=4 x 107" m. ¢ = 90°

atomic no.of gold z =99 |
charge of « particle e = 1.6x 10 coulomb
AQ =5.9 x 10 per m’.
V, velocity of a particle =3 x 108 m
m=(2x 5x 10°).
7:22 =e4
Scattering cross .section of aparticles = lon? &2 WV Sinte)2
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(79 )2 x(1.6x10" )’

6,2 19 zyginZ(g’LJ = 6.9 barns
= 16 x(3.14 ) x(8.85x 10717 )2(2x5x10°)? x(1.6 %10 ) xS )

where my Vy' = (2 x5%10%)2x(1.6x107'7)?
th another particle of mass

17. A particle of mass 5 kg moving with velocity of 10 m/s collides wi ;
d : isi . ther.
10 kg moving in opposite directions with a velocity of 20m/s. During collision they stick together. |

Find the common velocity.
Solution": Applying law of conservation of momentum we have

mu, +mu, =mV, +mV,.

Given v
m, =5 kg, u, =10 m/s, m, = 10 kg

u, = 20 m/sec. it V,=V,=V

Now
5 x 10+ 10 (-20) =5v+ 10v it
50-200=15v
-150
V= “—]5———10m/sec.

The combination thus moves with a velocity of 10 m/sec in the opposite direction.

&&&
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2. MECHANICS OF R[GID BODIES )

LONG ANSWER QUESTIONS
Q. 1. Derive equation of motion of a rigid rotating body.

Ans : Consider a section of a rigid body free to rotate about
fixed (Z-axis) on an incrtial frame as shown in fig. A force I'—, taken
in A=Y planc of the section, acts on a particle 7 of the body.

The position of point P with respect to rotational axis (Z-axis)
is defined by vector . This force produces an angular acceleration in
the body and hence it rotates about the Z — axis. The torque acting on
the particle P (which may also be taken as a torque acting on the rigid
body as a whole) is defined as

T =r X F

e . Fij
The direction of t being along the Z-axis up (right hand rule) “
. Now we shall investigate the relationship between torque ¥

applied to the rigid body and angular acceleration of the body. This is Pe+ds) i
also known as the equation of motion of rigid rotating body. Suppose \
the body rotates through an infinitesimal angledg, in an infinitesimal ’ dréy, &
time dr. During time df, the particle P moves from a position P(?) to a ) ‘ Pty
new position P(r + dt) along a circular arc of radius . The distance 7 |
convered by P is ds. : 7 ’

From fig. ds=rdo o f:;

. X
The workdone by the force F' during rotation is given by o - Fig

dw = F .ds = F(ds)cos ¢ =Fcos ¢ .ds
where F cos ¢ is the component of F in the direction of ds.
=(Fcosd )rdo (- ds = rdo)

Here (F cos ¢ ) r is the magnitude of the instantaneous torque exerted by F on the rigid body
about the axis of rotation (Z — axis). :

dW =1.do or ——dW—t@
-t : dt  dt
. do ( dw )
or P= T.'d—t—-'t(x) . —dt =

This expression gives the instantaneous power P,

: e - L, 2],
As a result of this work, the rotational kinetic energy of the body (5 lo ) 1S increasing. Now we

equate the rate of work done on the body to the rate of increase in kinetic energy i.e.,

d—uizl’:—d—(—l-lwzj Tw:i(‘il“’g)

dt dr\2 de\2
=—é— 1 gz(mZ ) (1 = constant)
., do (_@’___ ) . , dw
-—10)—(—17—1(,0(1. . dt o R '[:I-(?t—::l(x

where o is angular acceleration. This is known as equation of motion.

T sl AL TR
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Relation between torque and angular momentum.
do
L —-‘L([m): I

We know that L=1wo = ~
do . deo _d_é _
As 2 s angular acceleration and so / i at
This also gives the equation of motion of the rigid rotating body.
dw
1=]—
dt

This represents the equation of motion of a rigid body. This states that the torque about a fixed
axis is equal to the product of moment of inertia and angular acceleration about that axis. ,
Q. 2. Derive Euler equations of rotational motion for a rigid body fixed at one point. Prove the law of
conservation of K.E and angular momentum from them. ‘ )
Ans : Euler equation of motion is used to Transform the equations of motion of rotating body

from body coordinates to space co-ordinates.

(ﬁi_éj =(—‘-1£) +oxL ‘ - 1=(‘£}+me
dt space dt body . » \ dt ;
........ ) ‘ _ o
If the body is symmetric, and its axes of rotating coincide with the principle axes,
then TI =(%\] +(02 L3 —0)3L2 ' . . W TR T siees (2)
i ok
oxL=|o;, w, o3
Ly, L, L
sine L =iL,+ jL,+ kL, and o= io,+jo,+ ko, ; .
S oxL=iwol,-olL,) —jg oL —-olL)tk(ol,~ol,) y
= i(ol—ol,)+j maLz_mn_L3)+k(m1L2—m2L1) S
- Since L=Io :
: do ‘ o dai .
T =11(—dtLJ+mJJ3mz—co3lzmz . T =Il(—?‘h%}+m2m3(13—12) ........ 3)
o do, s ' |
Similarly <, =1, = +o0,(1,-1) S @
: do , , :
TS=I3('7dt—3J+mlmz(Iz_I)) o oty 21 Y esssmnes (5)

Equations (3), (4), (5) are known as Euler equations of rotational motion for a rigid body.

To prove the law of conservation of energy : If no external Torque acts on a body the K.E of a
rigid rotating body is constant.

If external Torque is zero
The Euler equations can be written as

Iz&'+(13 —12)0320)3 =0 , Lt T e )
dt '

I, d;!)tz +(I;-I))0;0;=0 - , ; : ere(2)

I, dsts +(Ig-I)owy=0 e )

Multiplying equations (1), (2), (3) by ®,, ®, and w,, respectively and adding. |

fffff . A
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dw ;
,11(1)1-—(117L 4 (I - 13)0),(1)2(:)3 = () : cereenn(4) ’
[0}
Lo, —2%+ (5, - 1Io0,0,, =0 (5)
7 dwg
3(‘03 d[ + (]2 e I] )(1)1(1)2(1)3 = 0 ,,,,,,, ,(())
adding the equations (4), (5) and (6)
do, dw, do
I](D] : + 12(02 7 .4 ]3“) 3 (;t"? =0 (7)

: i[d(, : :
The above equation can be written as E[(_iz{llmlz + 12‘”22 * ]"fm-"l}J =

. d 1 2 1 2 1
”Z[Ellm] +‘512c02 +5130)32j|=0

Rotat10na1 K. E = constant
If no external Torque acts on a body, its rotational K.E constant. This is known as law of
conservahou of K.E. .
To prove the law of conservation of angular momentum :
~ Statement : If no external Torque acts on a body its angular momentum is constant.
Proof : Multiplying equations (1), (2), (3) with J,w,, [,w,, [,o respectively and adding

d

2 do 2 do  do | 1d 24 1L%0,% + [0 ,7
1dy,, d(L)

- L _=0
2 4t [ ] i dt

-. L = constant. When external Torque.is zero.
Q. 3. What is a symmetric top? Derive an expression for the precesszonal velocity of a symmetric top?
Ans : Precession : The rotation of the axis of rotation of the spinning top is called precession.

Axis of Precession : The ax1s about which the direction of rotation of the body precesses is called
- ?

the axis of Precession.
Expression for the angular velocity of Precession of a Top : A

symmetrical body rotating about an axis which is fixed at one point is
called Top. The axis of spinning top moves around the vertical axis and

sweeps out a cone.
Consider a symmetric top rotating about the verticl axis OZ. At

any instant the axis of the top makes an angle ¢ with OZ. Let L be the
angular momentum. Let » be the posion vector of centre of mass. Let the
weight ‘mg’ of the top acts vertically down wards from the centre of
mass. The torque acting on the top due to wcxg,ht about ‘

‘D’'is t=rxF t=rFsing 1= rmgsinQ o , Fig

The direction of Torque is -Ler to the plane containing » and mg. Hence the torque is Ler to L i.e

Ler to the axis of rotation of the top.
This torque produces angular acceleration lerto . Hence w changes in dlrectlon by not in

magnitude. Hence the axis of Top o, L, r all precesses about OZ.
Since there is external torque acting on the.top, the conservation of angular momentum is not

obeyed. The angular momentum value changes in a direction Lerto L.

In a short time At , the torque © produces a change At in angular momentum.

al or AL = tAt
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. tu :
Precessional Velocity (©,) : Let Adbe the angle turned by the head of angular momentum in a

time Af. From sectors ABC

AL - /_ i
BC=ACx4% ¢_-E=0Csm€ %
~. Precessional velocity = o, = =
” TP A / \\

At
BC AL AL

From the diagram A=

AC  OCsin® Lsin® ‘
= mgr sin6
I N 0r =" aine
Lsin® x At P Lsin® A
m ) . . . .
©p = % But L = Jo ®, =_f%r This is the required relation.

0. 4. Deme an expression for angular momentum and inertia tensor.

: The relation between angular momentum and angular velocity L = I is very simple to
explain the motion of rigid rotating body. But when the axis of rotation does not coincide with any of the
principal axes of inertia, the relationship between L and @ becomes complicated. Now the motion can be
expressed in terms of the components of the angular velocity in the direction of the three axes of a
coordinate system which is attached to the rotating body.

In general for i* particle may be written as

L=Ym[(r,.r,yo—(r,.0)r,] S e PN S (1)

in general case 7.0 =0. For this we conmder the xyz coordmate system fixed in the body
Now eq (1) can be written as
r=ix+jy+kand o =io_+ joy + ko,

(r.r) = (ix; + jy; + kz,). (ix; + jy; +he;) = (& +y2+2D)
L L=Ym[(x] =¥ +z") (lox+ joy+koz) — (xox+y,0y + 7,07) (ix, + jy, + le,—)]
=¥m, [{(yf: +zf) ar — xy,0y — X,z,0z}] i +[(Jc‘.2 +zi2)my —x,y,0x—y,z,0z] j

< [(x +37) oz —xzor-yzoyl k |

weknow that L=1L_+jL +kL,
comparing eq n (2) and (3) we get
L= Z[m,. (/) +z:.2)c),.:~[—Zm,.x,. Joy<[-Emxz] J(.)4
L,; = Z[mz (xiz ':_Ziz)my [ zmxtr} ]OI [ th}l “i ](")‘
Lz = Z [771!- (Ii: +}'52)®Z+{—Zmixi ] [ me}t x]_LJ """""""""" (4)
angular velocity with x, y, z axes can be written as -
I =Ym (y>+z)=YXm, (r7 —x)

I, ==Y mzx.y

i/ i

=-2mxz, 4)
These are called Inertial coefficients. :
In terms of inertial coefficients eq (4) can be written as
L=I ex+~I ew+I_cx
L=I.0+Lo*Lo
L=Io-I,0+Lo, : (6)

The matrix form of eg (6) is given by i
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xy taxz
Ly|= I.VX ]y.v 1)z w,, '7
T . ,]Zy I gt B TER ), Beer g o8, @1 TR (7

The diagonal elements L, I and I arc called as principal moments of inertia around x, y and z
axes respectively. The other 51x terms ie I LiLsL, /| and I are called as off diagonal terms or
products of inertia, "

- eq (7) can be expressed in a more compact form by using symbols 1, 2, 3 for x, y, z respectively.
us . ~

3

=§,’w“’v #=1,2,and3 2 e B ®)

The more elegant vector form of eq (8) is ~
L=I®& - B B )

where o is the vector with three components o , o, and o, and T stands for an operator called as

tensor. .
Propertles of Inertia Tensor :
. Inertial tensor is symmetrici,ethed ements of Inertia tensor for all 4 and v obey the- relatlon

I, =1, i SR AT (10)

2. We can define xyz axes in the body in sucha way that the products of inertia /,, are zero for all

4, v. Such axes are called prmmpal axes of Inertia.

1. 00|
B KT St AP (11
0.0 )
3. For a sphere all the three axes are symmetric.
Lol =l bl M , ' Seussdanaslinyssee (12)
(or) I I I 2 :

such a body is called spherical top
4. f1=1=1, The body is called a symmetric top
! Abody for which I =Iandl=o0 is called a rotor.
6. For a body with cyhndrlcal symmetry ‘The axis of the cylmder may be taken as principal z -
axis and x and y axes are symmetrical. Then
[,=[ andl =1 " . (13)
Any rigid body other than that having cylindrical shapes and satisfy eq (13) is called a symmetrical

W

top.
7. Consider a solid body rotates about one of its principal axes then , = o and ® =0, = 0
NowLZ =L =0andl,=Lo A (14)
SHORT ANSWER QUESTIONS ;

0. 5. Wrzte short notes on gyroscope?

Ans : The miotion of a gyroscope con51sts of rotation
precession and a nutation.

Description : It consists of a heavy disc revolving
with a high angular velocity ‘@’ about an axis POQ passing
through the disc, parallel to the horizontal and supported at
P on a vertical pivot AP The weight of the wheel acts
vertically down wards from the centre of gravity ‘0" of the
wheel. Torque acts on the wheel due to gravity. :
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Working : When the wheel is in rotatory motion about its axis of symmetry,
force supplies the torque necessary for the precessional motion. So the body precesses & ficing the
with an angular veloeity ®, The torque t changes the angular momentum in direction producing
yrecession of angular velocity o . : o
l 1f the prccissimml rate is more, the axis POQ riscs, if it is low, the axis of rotation fall. The'rise.
and fall of axis of rotation about the equillibrium is called nutation.

Gyrostat Description : It consists of a heavy disc G capable of
rotating about its axis of symmetry. Its axis is mounted such that the
disc can turn freely about any one of the three mutually perpendicular
axes. Suppose the axis of the dise coincides with X-axis. It is carried
by a ring R,. This ring can rotate about the Y-axis, held by another
ring R,. R, canrotate about the Z-axis, held by frame /. These 3 axes
have the origin coinciding with the Centre of mass of the gyrostat. So
a gyrostat can rotate about any axis.

When the disc is made to rotate at high speed, the rate of precession
(w,) 1s small. This instrument is used a gyrocampass with its axis of
rotation in the mwmllu meridian. These are used in ships and
submarines. . ;

Q. 6. Explain the precession of equinoxes and its consequence?
Ans : Earth is not a sphere. The lower part of the earth is slightly closure than the upper half. Due
to this there is a difference in the force of attraction. This difference acts as an external torque.
In the presence of external torque the axis of rotation precess about an axis. The equitorial plane
of the carth make 23.5° with the plane of rotation around sun. The line joining the intersection of these
two planes is called the line of equinoxes. During one complete rotation of the earth crosses the line of

equinoxes twice in a year i.e., on 21 March and 22nd Septembe1 The first point is called vernal equinox
and second point is called autumnal equinox. -

Q.7. Explain the precession of atom and nucleus in magnettc field ?
Ans : We know that the elementary particles possess an intrinsic angular momentem called spin.
Most of the atomic nuclei and atoms also possess.this spin. The spin of the angular momentam of atoms
or nucleus is always have the intrinsic magnetism. So that the atoms or nucleus behaves like a small bar
magnet or magnetic dlpOlL The magnetic moment of the dipole pomts along the direction in which the
“atom or nucleus is spinning. A
When a bar magnet is placed in external magnetic field, it ¢xperiences a torque (r) The bar
magnet shows torque to allign the external field direction. In the same way the atoms and nucleus also
shows torque when placed in an external magnetic field.

Due to this torque, the atom or nucleus undergoes a precessional motion just like a symmetric top
in the gravitational field.

The magnetic moment of the bar is M = m x 2

m is pole strength and 2/ is length of the magnet.

Torque cxpcricncc by the atom or nucleus is T - MB Sing (1)

Where ¢ is the angle between direction of mag,ncllc induction B 'llld the axis of the magnet.

the gravitational
about the axis AP

The rate of precession of atom or nucleus is ‘@,’ can be detected by picking up the very small but

definite electrical signals that are produced by the rotating atomic or nuclear lll'lf:n(:l%
The torque on the nuclear or atomic magnets are ~B ’
- : F=MB
w,J Sin0 SRS 12

. N
cquating eqns 1 and 2 we get

21
MB Sin § = @, J Sin 0 (or). @, = ==

.

. ) - : . Y=
Where @, is the speed of precession of the atomic or nuclear magnet. F=mB
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SOLVED PROBLEMS
‘8. A car develops 75 KW power when rotating at a speed of 1000 rpm. What is torque acting ?

PHYSICS (E.M.)

Solution : The power P developed by torque  exerted on a rotation body is given by
P=10 ort = Pl

Giventhat, P=75KW=75x 10'W = 75x 10’ joules/sec.
and ©=2nn=2r (1000/60) =100 /3 rad.sec.

75 x10°
~(100w/3) = 7163 joule.

9. Asphere of mass 2.5 kg. and diameter 1m rolls without slipping with a constant velocity of 2
m/s. Calculate its total energy.

Solution : Total kinetic encrgy is given by

i ] 1 1(2 %
K = Koo TK = MV +=—]w? —MV2+{_MR2 (—J
frany rot, 2 2 ) 2 . 2 5 ) R

(- for sphere I = (2/5) M R? about diameter and o = V/R)

1

K ]MV2+1MV2 L my?
lnral 2 5 10

Substituting the given values, we get-

K

to1al

7 =
=70 X (2.5) (2)? = 7 joule

10. A ballet dancer spins about a verticai axis at the rate of 1 revolution per second with her arms
out stretched. When her arms folded her moment of inertia about the vertzcal axis decreases
by 60%.Calculate the new rate of revolution.

Solution :

Given that I, = 0.4 J,"(/ is reduced 60%)

o ,=2n x 1 radian/ sec., m2—2nn ?

According to the law of conservation of angular momentum

Lo,=1o0, 041, x2an=1x2n x1 - n=1/0.4 = 2.5 Rev/sec.

11. The speed of a particle moving a circle of radius 20 cms increase at the rate of 10 cnv/sec’. If
the mass is 200 gms, find the torque on it,

-

Solution :

dL dv
r —_—

We knowthat L=m Vr and == =m o

dv ;
Here m = 200 gms = 2.2 kgm, r = 20 cm = 0.2 m and - =10 em/sec’ = 0.1 m/sec?

1 =02x0.2x1.0=0.0004 N-m,

"12. A500gm stone is revolved at the end of a 0. 4 m long string at the rate of 12.5 rad/s. What is its
angular momentum. ‘
Solution : :

We know that, L=m P o ‘
Given that, m=0.5kg, r=04m andw = 12.5 radss.
L=0.5x(0.4) x12.5 = I Joule-second

C} Scanned with OKEN Scanner



30
Semester - 1

PHYSICS (EM.)

j ions per second is 100
13. The kinetic energy of metal disc rotating at a constant speed of 5 revolutions]

joules. Find the angular momentum of the disc.

Solution : L=1Iw
w=2nn=2x314x5=314sec’

- 2K.I. 2% 100
KE=-0"1 o 1= ( = ) or I= (81.4)°

s L=lo=L=02028x314 = 6368 kg-m’ sec’’

-

= 0.2028 kg—m’

rotate. Calculate

I m

14. Acircular disc of mass 100 kg and radius Im is mounted axially and made to
the K.E it possesses when executing 120 rotations per minufe. .
Solution : Given n = 120 rot / min M =100 kg, R=

= L = kbl =4x radi/ sec
H 60
Moment of Inertia 7 = 4, MR? =L x 100x (1)’
CKE=Y10" = YxLx100x (1) x (47 )? K.E = 9349 Joule.
15.

of inertia?
Solution :

. 60 o
given o, =60 rpm= %XZT rad/sec = [x2r rad/ sec.

30 ,
©,= 25 % 27 rad/sec =

= rad/sec.
lossinK.E= 1o? -1 Jo,’
100= Y1(4n° - n°) .

2x100 200

&& &

= Wl(of -w}) = YI(2n)

A fly wheel when slowed down from 60 rpm to 30 rbrn loses 100J of energy. What is its moment

_.ﬂz)\
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3. CENTRAL FORCES

LONG ANSWER QUESTIONS
Q. 1. Discuss the conservative nature of central forces.
Ans i Con§ewative force : A force is said to be conservative, when the work done by the force in
moving a particle from a point 4 to a point B is independent of the path followed between 4 and B.
‘ Ce}r!tral force is conservative force : The work done depends only on the particle’s initial and
final positions. I.n addition, the workdone by a conservative force along a closed path is zero. ,
Explanation : Consider a particle is taken from point 4 to point B through the path APP'B (pathl)
or AQQ'B (path2) as shown in fig. The amount of workdone by a force F'is given by
‘ If the workdone along the two paths is the same, then the force is known as conservative. Thus for
a conservative force ~

B B ; -
[F.ar=[F.ar K Ldiind
| SUNY g B
Pathl  Pathll ' g NEGRACYAN 5
. . . /
Consider two points 4 and B as shown in the dia- T T /b‘ \\
. 1\ i/ \\ N
gram. Let a particle moves from point 4 to B along any ¥ /// \ \ Dt B
. ! & a
path under a central force which directed away from a point r / N \\
. - . / \ \
O. Taking O as centre draw two arcs of radii 7 and (r + dfr). |/ 4 ledr)
These are shown in the diagram These arcs will cut the - 0 ® >
) - 10/
paths at P and P, O and Q,.Let dr,anddr, be the T I:Q
displacements of the particle between the arcs along path . . . Fjg

(I) and (II) respectively. Let F, and F. 2 be the central forces

acting on the particle at points P and Q. Let 0, and 6, be the

angles between F, and dr, and between F, and dr, . _
. The projections of vectors dr, and dr, on F, and F, will be dr,cos6, and dr, cos@,.

Since Fy=F» dl_‘; cos 0, =er cos 6, | F;.d;;= Fi.dg _ .
In the same way we can obtain the same result by considering every path segment taken along
path I and path II. so, in general : .

-

B - B -
j-F.d - j F.dr
A A

PathI.  Path Il

. The work done by the forces along the two paths is equal.

W (Path 1) = W (Path Il) | i
In this way, the workdone by a central force acting on a particle moving from point A to point

B is independent of path. Hence the central force is conservative.
Further we shall show that for conservative forces, the work done around a close path is zero.
The workdone in moving the particle from point 4 to point B through path I is given by

-~

B B
W(A— B)= [Fudr = [F.dr
A A

(Path)  (Pathll) ' . :
The workdone in moving the particle from point B to point 4 through path II is given by

B B
W(A - B)= [Fp.dry= [Fdr
’ A A f
(Pathl)  (PathIl)
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" B B B
v [Fpdr, = [Fy.ary = jlr.d;}
A A A

‘V(A——)B):—-W(B_)A) or W(A__)B)-}-(I}—’)A)‘:O
Thus the total around the closed path A » B — A is zero.

Q. 2. Derive the equation of motion of a particle under a central forcc.? o s ahways towaeds
Ans : When a body moves under the action of a central force, the force is radial and 1S 4

2 2 '
. . o A 1) N I L e (1)
a fixed point. The radial accelaration is given by 0 T ‘ )

1d do ) ) er
The transverse accelaration is ;gt‘(”g :i—t) . Since there is no force acting on the body L“tor,the

transverse accelaration is zero.

1d( »do | |
_-‘;a_t(ﬁ EJ 0 2 % P S @)
_ 1 .d_r—_d_(i)—_l-g.i—-id_uxgg ¢ :-—( ‘251—9-) _Eiﬁ_-: —h—Cl—u"
et dt dit\u) u® dt u*do dt dt) do~  do
o d9_h
~h=r?= —=—
" dt o @ e .
o dfr_dfdr]_df ,du __h;-l_[d_u)-:_hi[d_ux@] |
Further A2 dt|dt| dt do | = de\di de| do dt
:._h_d_g_l:t.x_d_e—_—_ d_22.£=_ 2u2£u_‘
de? .dt  de®r? - ao?
3 d27' 2 2 d2u
.-d—t-z—"‘—h —de—2 .......... (3)
X 2r ‘
Substituting the value of I from equajion (3) in-equation (1) Radial accelaration

: - d’u  (de)’ d®u  h® 2 »du .

. . 2 2 _ _p2.2@u hT s o 2
Radial acceleration = -h°u —de—z—r(zt—) = -h’u oF T = h*u? — - h%u®
Force acting on the particle = Mass x Radial accelaration

d*u d*u F o o du o o
_ 2 2 2.3 | 22 23 £ _ 12,3 238 R
F~——m|:—h u .dez—h u }4;1[/: u 'Wh 1 ] m—p-f\:h u .%—g—+h u }(pxscallcd
force per unit mass) | '
2 d?u %
" Ph[z(r} L U @
do h*u

This is the differential equation when a body moves under central force.
0. 3. State and prove the Kepler's laws of planetory motion?
Ans : There are three laws regarding the motion of planets.

1st Law : Every planet revolves around the sun in elliptical orbit. The sun will be at one of its
focii. v
2nd Law : The areal velocity of radius vector is constant.

3rd Law : The square of the time period is directly proportional to the cube of the average dis-
tance between the sun and the carth,
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Deduction of Kepler’s Laws : : o
1st La‘y : Consider a planet of mass m rotating around the sun of mass M iri an orbit of radius r.
According to Newtons law of gravitation, the force acting on the planet due to sun is

GMm

. F=-= (1)
This force is directed towards the centre of the sun.
According to"Newton, the radial force
d?r do\?
F=m|l—_
m{ 72 r( dt] ........ )
From equations (1) ahd 2)
di? \dt 2 gz 0 TR B7
Multiplying with 7
d?r ' d?r ( do. h) '
3 4 2 3 2
ar_ - 2T _hZ-_GM g
rgEre GMr o h r di - 2) e (3)
_ R 2_do
ar_d (1) _Zldu_-ldu do_-ldu , (220 )
dt dt\u) u?di  u? de dt._uzdex}w o
dr_ndw o dfr i(ﬂj__hi(ﬂ):_h_i[@x@}
T dt de dt? dt\de) do\dt "do|.do " dt
d [du) 2 2. 2 d u
= —h—| 22| x hu? =~h
a6\ do) " “ ae?
- 3| _p2y2 9| gz gy
-. Equation (3) can be written as r % 07 = r
, d’u _GM | o
Dividing with — i 21 ; gz 4= 2 . RA— @)
2 ‘ 2 ¢ .
ﬂ+(u_%)=0 : j——(u~~qgj+(u—%)=0 ('.’G—];J=constant)
de? h do? h? h h \ _
- e GM oM,
It’s solution is u——h—g—:A Cogl  p=rpddiliged
.-,_1_=-G—A£+Acose
r hf
h2 ) _}f_. ‘ 2 A 3
Multilplying with ~r _G;M_ =1+ %—13— c0s0 L e ;(5)
This equation is similar to polar equation of conicsectic_m
ie P giecos0 (6)
r .
: 2 .
h? re= h"A / = semilatus rectum e is eccentricity of the conic

where [ = O G -
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If €>1 the conic is hyperbola €=] the conic is parabola e« the conic 18 cllip
.1 4, GMm
The total energy of the planct £ = -‘-Q-mvg - .
o do h o _,,do(h.mg(_))
T A7) T
. !
From equation (6) T I+ ecos0
) . =1 A7)
When 0=180" : c0s180° =~1; r=ryoe, " 7 07€
: , Max
- e Ty (8)
Similarly when 0=0°;. Cos 0° =1, r=r, " AR - W e
min Tnin : :

(7) _IMin _1-€ Tpax _Ite€

s
(8) " Max I+ e Tinin I- e

. TMax =TMin _ 1+ €-I+€
Thax FTmin . 1+ €+l—€

v 2 2 = 2 _. : l '2 1_‘2 |- e
g ( 1 J _ GMm __J__(l e) _GMm[lTe} gt (-¢) —GMm[——r}

2¢e
= —= .
2

=E T Pitax " 2m l‘ 2m I?
But l_=(’;—;l h=.% .'.,l=—c—;i]4%5 But 1 =57;51—,;—,;,7 ; ‘l‘[; =_(_11_J_%l;_7§_4_
E =g_;.x9.2.1‘§m_4 (1- &) ~GMm x Gi‘ff (-9
Ezﬁiféﬂjécn_’ (J_G)Z_gz_ﬂjj_ﬂi(]— €) |
213:% [(1.6)2-2(1— €) —G—f—%ﬁ#l—e)lu-el—wl=—(l-e)(l+e)
.a-zz-sjz—j"gz(]—ez) E=_%MJ_‘25’LL{>< {1— &) Since £ is negative </,

- From this equation it can be shown that every planet revoles around the sun in clliptical orbit.
2nd Law : Let the planct moves from P to P in a time dt. Let dg be the angulars displacement.

. . 1 p
Let the area covered in a time dt = 3 x h*d0 5’::} {
aw
1 ’ [.£
i l bl [
Areal velocity = irz & constant =— @!mnu
: 2 dt 2 arabola

. ' . Hypar
. The areal velocity of radius vector is constant T

3rd Law : If g and b arc the semi major and semi minor axes of the cllipse,
b?  hf b®  a

a GM “h?GM -
If T'is the period of revolution of the planct around the sun

DS 9 9,9 9y ¢ n
_ Area of the ellipse  nab © 2nab - an*a’t dnla® x ah? i

Areal velocity — h/2" h he GMxh*  GM
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T2q o2 This is 3rd Law.

= The square of the time period is directl /’7\ e
_ P y UEE T
proportional to the cube of semi major axis. ‘“‘-u._ ”‘i__,./

PHYSICS (EM.)

SHORT ANSWER QUESTIONS
Q. 4. What is a Central Force? Give two Examples.
Ans : Central force : A central force is defined as a force with always acts on a particle or body

towards or away from a fixed point and whose magnitude depends upon only on the distance from the
fixed pomt The central force on part1c1e is expressed by F can be expressed as

= tf (1) — ()
.Where f (r) is a function of the distance of the particle from the fixed point and ; is unit vector.

Examples : 1. The gravitational force excerted on a particle by another particle which is stationary.

Consider the gravitational attraction force between two masses m, and m, separated at a distance r. The
force experienced ¢an be written as.

mymy mz P!

F,=-G——3=

Negative sign mdlcatesl that force is attractive..

But F=f(r) 7. ' © f)==G ’":;"2 -_ch |

.. ) - ’ 1
where C=G m, m, - (or) . . f(r)ar—z-.

2. The electrostatic forced gxerted.oh a charged particle by another. Stationary charged particle is
central force. The electrostatic force between two c’harges is given by

I g4, 4192 'C 1
o= S———— e—— v)s —m—. — J
12 4re, P r . ~ f(r) 4r <, rz 2 where C = 47 <, 9192
. ' 1 P’ ‘
LF=f(r).r (or) f(r)ar—z
Q. 5. Prove that the Areal Velocity is constant under the influence of central force ?
Ans : Consider the motion of the earth around the sun. At any in- "
stant r is the radius vector of the earth with respect to sun. In a short time T TS P -
interval dt the earth moves from position. P to P/ where the radius vec- {/ /§1~ — ‘\\‘
tor is » + Ar. Let A A be the arca swept by the radius vector in a time  —¢ Y,
interval A ¢ \\\_ P
- 1 : .
". A A = Area of the triangle SPP! = i base x height ‘ ‘ Fig
Area of the Triangle |
1 AA 1 Ar dA 1 __dr 1 1
i 22— rx— or ——=—IX— = —PXU = ——rxmu
M=orxtr N2 N dt 2 a2 " " om
dr_ L 4
dt 2m

. Under central force angular momentum remains constant. L = const.

OREE——— R BT W A AR R

C} Scanned with OKEN Scanner



. 36 ' PHYSICS (EM))
Semester - 1 *

b ii—,—‘—conxwt
T &

-‘% = Arcal velocity = constant. This means radius vector sweeps out cqual areas in equal time.
Q. 6. What are the characteristics of central force ?
Ans : 1. The general form of central force is represented by F = 7 £ (r)
Central force is conservative force. ‘
Under a central force, the torque acting on the particle is always zeto.
Under a central force, the angular momentum of the particle remains conserved.
Under a central force the arcal velocity of the particle remains constant. _ -
6. The central force is attractive when { (r) < 0 i,¢ negative and repulsive f(r)> 01,e positive.
Q. 7. Prove that conservative force as a negative gradient of potential energy ? :
Ans : When a particle acted upon by a conservative force F moves from space point (xy Vp 2,) t0
another space point (v, » z) then potential energy at r is given by.

TR

U@ =- [Fr
)

Now we express F and dr in rectangular coordinates as follow.
F=iF +iF +kF '

and dr=idv+jdy+kd:

FEdr=@GF+jF +kF).(idx+jdy+kdz)
=F dc+F dy+F_ dz

r x y z .
U(r) = jF.d" . J‘F\»d\ hn J.F.‘ydy o IF;dZ = IU (xl yl Z)
Xp Yo 2 )

Differentiating the equation partially with respect to x, 3, z we get.

dUu du -dU
Fx——-?.Fy—- & ’ansz—_dz—‘_

S . _au_.au_ au _ (.d
.'.F=1FX+JFy+kFZ— e ]_dy . =
F= —-(VU)=-grad U.
Q. 8.Show that the curl of a central force is zero ?
Ans : We know that F=VvV U ‘

g i
iU U U 2

. : % AU < ¢ —— —

L Curl F = Vx F=Vx(VY) =Vx (’ 7[—\‘_ + J'?v"*’ ¢ ‘—_j =|d dv d:
- b ) v au a
dx dy d:

(dUu dU) .(dU dU d*'U dU
=1 - + J - +k -
dydz 00y 0z0x  Ox 0z Ox 0y Oy ox
As U is a perfect differential, hence

ﬂ N d*U  d°U i d’U
Oy0z  0z0y dvoz dmdv and soon

L CurlF=VxF=0

Thus the curl of a conservative force is zero.

e -
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0. 9. Dertve Newton's law of gravitation from Kepler's law.

PHYEICS (1M

Ans : Consider the cane two planets of masses M, and M, revolving around the sun in circular orbits
of radii vy and v, respectively, Let T, and T, be their respective periods of yevolution,

The centripetal foree acting on first planet,

7 /""i

Y
' bl pa[
Ivemgn, w0 = omy ( - an” =L

7, 7,

Similarly, the centripetal force acting on second planet,

7

- o 2n m, r,
1y = my vy m, = m, ,}(F’I"J = 4n’ ,l',"

7
Dividing eqn's 1 by 2 we pet
B 1)

Iy my, o7,

According to kepler's 3rd law T o r P and T o 1)’

; 3
B
T e =l 0

fp m, 1, r my ry

. P
‘ /-./. = _’f’/r/

" /1) (or)

/
7

(1)

(2)

(3)

— (4)

If one planct is sum of Mass M, them according to Newton's 3rd law of Motion.

F(l-li;l-
7

mM

Fu

r g .

Q. 10. Explain about geostationar,
dius of the earth R = 6.42 10" m).

which is Newton's law of gravitation,

—(5)

y satelite and found its height from the surface of the earth (ra-

Ans : Geo — Stationary satellite : We have seen that the time period of a satellite increases with
increasing distancer. Thus for some orbital radius. The time period T will be exactly equal to the time
period of rotation of earth i,¢., 24 hours. Let us consider that a satellite with T = 24 hours. Let us consider
that a satellite with T = 24 hours has been put in a circular orbit with its plane coinciding with equitonal
plane. Further let the satellite will move from west to east. Now for an observer on the earth. The satellite

will appear sationary. Such a satellite is called Geo-Centric satellite.
Now we shall calculate the altitude of the Geo-stationary satellite.

7 r
We know that 7 = 27 \/;

The value gat a distence r from the centre of the carth is given by 9.8« R?/r%.

Where R is the Radius of the carth,

K 4
T =2n ’—-—,’—7
Vo.sk

Now T = 24 hours = 86,400 sec. and R = 6.4 » 10°m.

3

r
- 86,000 = ‘.3.14" -
86,000 = 2 ~ 9,8%{6.4/100}1

r

3

L (86400)7 =(2)% 2(3.14) #

9.8 % (64210° )°
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L+ _ (86,400 ) % 9.8 % (6.4%10°)°

r=4.283 x 10" m.

(2x3.14)
.. Height of the satellite above the earth's surface.
h=4.283 x 107 — 6.4 x 10¢. =4.233 x 107 - 0.64 x 10
~h3.593 x10"m : h = 35930 km.

Q. 11. Discuss about Motion of satellites ? . i i
Ans ; We know that planets rg;olve around the sun. Similarly there are certain heavenly bodies v\(/ihlch
- revolve around the planets. These bodies are called satellites. For example moon reYO]VeS ardoun the
earth and hence moon is a satellite of the earth. Thus any relatively small body rpovmg roun .’;\)pother
relatively massive body is primarily called as satellite and its closed relative path is called by. orbit. -
Moon is a natural satellite of the earth. Now-a-days artificial satellites are also Put 'mto orbits
round the earth. The satellites move round the earth under the action of gravitation attraf:thn exerte.d b'y
the planet on the satellite' is under the action of a central force. The launching of an artificial satellite is
done by means of multi stage booster rockets.

g
1. The orbital velocity of the satellite te revolve around the earth must be V=R J;

Where his the héight of the satellite from earth's surface g is acceleration due to gravity.

2rr

2. The period of revolution of the satellite is T =.

SOLVED PROBLEMS

12.If earth is at orie half of its present distance fi‘onﬁ sun, what will the number of days in a year.

Solution : From Kepler’s law ‘ T2q af 7
LTy _ay o ‘ B "0"1
?12_ _;?‘ Hf:re T, = 365 days and a, =

’ a,/2)°? ’ 2 f 55)2 - '
Ty = Tﬁ# - |(365)7 129 days
(11 8 b 8 )

13.Estimate the mass of the sun assuming the orbit of earth around the sun is a circle. The
distance between the sun and the earth is 1.49 x 10"m.

b - et
Solution: T =2=x ?}Rﬁ | M=47;2 7iG

Radius of the orbit R=149 x10"m. G =6.67 x 10~11 Nm? kg
Time period of earth around Sun '
T=(365.25 x24 %60 * 60) Sec .

y 2 3 ‘33
4><(3.14) ><2(1.4.9) ><10” = 1,964 X [0%kg,
(31557600)° x 6.67 x 1071 -

14. Show that the force F = () —x?) i+ 2xyj is conservative.
Solution : v x F =0 where F=(?—x}) "N + 2xyy

Mass of the Sun M =
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/ s 4
i/ _,” (z’.’ly) U (yz . x”)
Ux oy ;

P " A / ly o
“dlo-o)i jo-o] K2y - 2y| ~ilo]s jo]s Ko]-o
1511 the radiny of the earily suddenly changes to half the present valm' without any change in mass.
What would be the change in the duration of the day?
Solution s Applying the law of conservation of momentum Lo, = 1,

0 . 0.

_ . o ) / I,
where 7, = MR 2, o g, where 7= 24 hours [, = MR, @2 = . But Ry=~- P

0 .n Sl By /n ' T, 2

A

16. The maximum and minimum distances of a comet from the sun are 1.6 % ] 0" mand 8 x 10" m

respectively. If the speed of the comet at the nearest point is 6 % 1 0 misec. Caleulute the speed at
the farthest point.

Solution : IHere the angular momentum is conserved. L = myr = constant

mv, r =mv,r, Vil =
Vary 6% 107 x8x 10", i
(or) AL " 16 % 101 =3 % 10* m/sec.
& & &
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' UNIT-I
4. RELATIVISTIC MECHANICS

LONG ANSWER QUESTIONS ) ]
Q. 1. Describe Michelson - Morley experiment and explain the importance of is res ult? ine th
Ans : A.A. Michelson and E.W.Morley carried out an experiment in the year 1887 to determine the
absolute velocity of carth in the stationary ether basing on the principle of Interfer‘ence. .

Description : S is a monochromatic source of light of wave length. . The light rays are mz; 5?; ©
fall on a convex lens L. The emergent light is made to fall on a semi silvered glass plate G kepctl at 1 to
the beam, The beam is splitted into two parts. The reflected beam travels at right angle towards a plane
mirror M, at A, The mirror again reflects the beam to G. The transmitted beam travels along the c;lrgctlon
of initial beam and falls on the plane mirror M, at B. It is again reflected to G. The two reflecte ;ar;}s
combine at G producing interference pattern, which can be observed with the help of Telescope I. To
make the optical paths as equal another glass plate, identical to G’ is introduced in the path of transmitted
ray. The plate is called compensating plate.

Working : Let the two mirrors M, and Mz are at a dis-
tance ‘I’ from G. If this arrangement is at rest in ether, the two
rays (reflected) will take same time to reach G. But the whole
apparatus is moving along with the carth. Let us suppose that g 7Y, G
the direction of motion of the earth is in the direction of initial TN
beam. The optical paths travelled by both the beams are not the
same,

Theory : Let ¢ = Velocity of light in air

M,

P

1

T
v = Velocity of earth.
Due to motion of earth the motion of light rays are as Fig
shown in the diagram. From diagram GA'= ¢t and AA4'= vt.
GG'=2AA" .
(GA)? = (AA')? + (A'D)? " (++ GD = AA’) e 1) .
I ¢ be the time taken by the ray to move from G to A, then from equation (1), we have :
| !
2 2 2 t=
(c!,) = (vt) + (l) or ;2(02 -v¥)=1% or (c? vz)%
Let ¢, be the time taken to travel the path GA'G'.
o
2l 2l 2l V|2 :
b= 2= 7 7 _[1 —_2:\ 2l v? |
220/ 2 /‘2 Y c =+ —
(c*-v®) CLJ*%] | . +2cz] L2
c , .

2l v?
Sy =—| 1t —s

Let ¢, be the time taken by the transmitted beam to travel from G to 4 and back from A’ to G'.

2 _21[ v?) 7
- ] +___l____ =’2=1(c+v3+12(c—v) v22102 i o2 c o2
(c=v) (c+v) (7 =v) (cc=v') ¢€ 1~c—2 }
2, v* | |
2-___.(;_[1+-é-§-) \ o eaeeesd ( 3)
o v 2, 1 02) 2 V2 2
. “taay $1 o b . 1Y - — = —_— 1+'—" st 1+___ — S :v_
* The time difference Ar =1, ~1¢, c[ 02) C( c? c x 202 3
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. . 2
. Optical path difference =velocity x At = ¢ x At = ¢ x lv_; -

c c?
, v?
. The path difference in terms of wave length = n = =y

When the apparatus is turned through 90°, the positions two mirrors are changed.

l
. The path difference = [—Z—J
: cA

v? v? 20V?
. The resultant path difference = =l = 2= —

Ac? Ac? c A
- Change in fringe shift= n= 2121;
2
Substituting the various values
I=10x10°cm; A =350x10"cm; v =23 x10° cm/sec ;
. 3
c =3 x10" cm/sec or _2xLOXLO X (3XI0)1*04frmge

5.0 x 1.0 x(3x 10"}

They repeated the experiment at different places and at different seasons of the year. But they
could not detect any measurable shift. Hence it is a —ve result. Hence with this —ve result it was concluded
that it is impossible to measure the speed of the earth relative to ether or the concept of a fixed frame of
reference cannot be checked by experiment.

Significance : This experiment suggested that.the speed of hght in vacuum is the same in all
frames of reference which are in uniform relative motion. '

Q. 2. State Postulates of special theory of Relativity ? Derive Lorent; transformatz’ons.

Ans : Postulates of special theory of Relativity :

1. All Physical laws are the same in all inertical frames - Y- ¥
of reference which are moving with constant velocity
relative to each other. : '

2. The speed of light in vacaum is the same in every .
inertial frame.

Consider two frames of references S and §'. Let §' frame -
is moving relative to S with a velocity ¥ along the +ve
X—direction. Any event has co-ordinates (x,3,z and 2)
for an observer in S frame and (x',)",z',¢)) for an ob-
server in $’ frame. -

22 2\
dwtance orc=(x +yt+z)
Y +2-c=0 , T 0% i TR s Y S A boeeees €y

éince the velocity of light is same in all reference frames

= x+y +22)

. Velocity of light =

2yt e = =0 (c s constant) e

Since the frame S’ is movmg relative to S along X- direction i

yi=y; =z ‘ L 3) |

From equatlons (1) and (2), using eqn.(3), we have ;
1

' 2 2 .
L ox? - = xt =Pt o 4)

The transformation between x and x! is can be represented by the simple relation
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........ (5)

SR W R 1))
I the 8 frame move with o velocity — 7 along, ©)

¢ ! J . YT )
where & being independent of X and £ X direction x = 2" (x" )
Substituting the value of x!' from (5) in (6)
we have & = k’[?\.(,\" ~ut)+ o'

‘ /

i it )]t
o r?»(.\ )4 v or vi! ‘=~)\‘|‘~~?\.(.\1 -Vr) 7‘"" g \I ) l (7)

Vgt . . . PL Y ‘ 1 simplifi-
Substituting the values of x' value from (5) and ¢/ value from (7) in equation (4) and on simp
cation,

o
&

x¥ - eft¥ A (x - vt)? - (:""k”‘ { ,.;’1(1.“ ~l«) l ‘

consider R,ILS term

) 3 ki ¢ ] ; g
M(a? v v® o t? - 2xut) - o\ 2 »wﬁ;(ln- '"LT) —-'—J—lﬁ(l-—]—l—)
v’ AN v AA .
0 v 9 0.0 0 a, 0| o xl! ! 2 8 2% 2[x—
A a” 4 Mot - AN xol - ¢\ -~»-—-(I—-—,-—~7~~——-) A Sors
Ul v oA

A APt - %ot - ¢

o 5t &' ot g ]
IR TPV N T V L TR VY

P 0« ) (] 0 qQ 1 D )
nxf =P - e ? Ao M ut - o2

— — R I ——

P P ('I‘ [ .
v o uhand v v o

2 x? x? 2x%  2Ux 2tx}

Equating the coeflicients of # equal to zero, we pet
)

o =c? =222 4%\ =,0 —c? —-7\.2(1)2 —cz) =0
-}bz(V2~C'2)=C2 ) 7\42(02—U2)=02
2
)\’d= 20 2: 1' ,',l: 1 1 1
¢ v v’ U2""117“= L '
Pt 7-Y_ ' Similarly pal T AR R (10)
c’ : ¢? I- 9 .
C
1 x-ut
Substituting the values of 3 in eqn, (5) - _‘ii | (A)
! e
-
Substituting the values of 3, and 3/ in eqn. (7) or ¢! ST Al B g ot i (B)
‘ I ) L
o2
2 =z;y' =y

These are called Lorentz transformations. The inverse Lorentz transformations are
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oy & :
OF 2 = e ; -yl iz= 2 and 1= e -~
)' .
\/ -3 1L
¢ (’J

These are known as inverse Lorentz transformation equation,
Q. 3. Derive Einstein’s mass-energy relation, (Or)
Derive Equivalence of mass and ('m'u.:v
Ans : Consider a particle of mass ‘m’ moving with a velocity v, Let a force /" acts on it for a time dt.
The particle moves Ihmn;_,h a distance dy. Let dk be the increase in kinetic energy. According to Newtons

1]) d-
second law I = —=
TRy (nw)

According to theory of relativity, the mass as well as vclouty arc variables

r =m(—12+ vdﬂ , ‘ ' | )
aa @

When'a particle is displaced through a distance dx by the application of a force, F, then the in-
creasc in kinetic encrgy dk is

work done = dK = Fxdx ' N S 3)
Substituting the value of £, from eqn. (2) in eqn. (3), we get,
dv dm dx dx ' '
dK =|m—+v—
[md +v 7 }d dK = mdu{dt] +vdm [dt] N '
, [ dx _ ‘
o dK = mvdv + vVidm ( E = ) . | e 4
R .
2
The variation of mass with velocity is givenby ( 1- %J
. - ¢

where  m_ = Rest mass of thc partlcle
= mass of the particle when moving with velocny v,

; " m- =70
_ ) - o? 2
Squaring both sides, we have [ 5 )

m(—V) =m}? ¢ mic =m}? ¢+ m??

Differentiating equation ¢? 2mdm — v:2m dm — m? 2v dv=0

or ¢ dm — Vv dm ~mvodv = ‘

or cdm=mvdv+vidm L. )
From equations (1) and (3) dk = ’dm Lt e T T (6)

Integrating equation (4)

m .
N =c? =c(m - .
K= IdK =c J.dm =c¢*(m-my) g = mE-me D
. my '
This is the relitivistic expression for K.E. This is thc increase in K. £, The total kinetic energy of
the body £ = K + m,¢?
or E=c(m-m) + myc- or, E=mc
E=mc. '
This is Einsteins mass energy relation.

e s AN SN AT
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Q. A Explain varlatton of masy with veloelty 7 ’ ith a velocity V. In order 1o
Ans 1 Contlder two nystenm of coordinates 5 and 57, the latter moving, ""'”’ v J“l, ' in system S and
conlder the variation of mans with velocity, we shall consider a collission of 1wo hodies 1n aystem,
view it rom nystem S, v ]
Let the two bodien of equal mannes m, and m, be travelling with velocitics u
axin in the system 87,

The veloeitien u, and n, e piven ng

and ' parallel to -

'y 'y

[ | / skl

= MY and - i) , )
‘Il (l)

- ' , . : “the ing with velocity
Fhe mass of the body travelling with velocity t, be m, and that of the body moving v/ 7
iy bem, Applying law of conservation of momentum,
forth is collission, wehnve

Mg, =y my) ryresene(2)
Substituting, 1, and wy values from eq | in eq 2
we pet
I
: ! -uU +v
! | : u' +v ]
TR Y =U Ay - MY =my —m, | ————
m = [+ m, =0y myu v I 2 u'v
/ uvy uy / ] ——=
|- | - 4= 2
2 2 2
I
uvy
| 4.“*2_
m. . A
on rearranging these equations, we et m, u'y vvvrennenn(3)
c
2
2 1
: > | u v orl ot g1 U
" u°=[- —=5 =l=— ‘
Fromeq (1) ™ u'y c? ¢’ u'y
| [T 14—
2 i 2
solving weget
i 2 :
", v? |
|- = || ==
ulu c C
S =
¢ I - l(l I 4 T S .....(4A)
al
" Similarly we obtain
! 2
= v? L u v
- ) DI | ey
l “I‘) C2 (,'2 C C
——:5- - 2 : ) .
: ) e | R e (4B)
T 2
c c

Substituting above equation 4A and 4B in eq3
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S\1/2
u
S 22 Y AYl
m, C g
—_— 3 S __) *
172 S
2 L
| We get m, u, o
————— >
C ,/(),/ Ol x‘ X|

7/ /
Z 7
Let the body of mass m, be moving with zero, velocity system S before collission is u, = 0

m, 1
then —= — .

m 2
2 1- u,

: 2
c

In commeonly used notation m, = m m, = m,and u, =V

m 1
m, - Vf
N e :
(or)ym= Mo
VZ
A A T %)
CZ

This is the relativistic formula for the variation of mass with velocity.
_ SHORT ANSWER QUESTIONS
Q. 5. Prove x? + y? + 72= c*F is invariant under Lorentz transformations.
Ans : From inverse Lorentz transformation

t= c

I G = C \
x! + vt TR :
x=——v;y=y’,‘z=z’ and v?
2 - S .
j c :

6'2

/

Substituting these values in the given expression R

12
1. VX
r+=7

2\ ¢/

2
v
c

2
+2rvx'tt - xlz -y = 2uxt!

(x' +vt! ' 12 12
1= +y +z2 =¢C

212

¥y fz_ 2 ' JE;
-z

e e
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Hemeatey | A IVET LV

N ’U

v T i 7] g y
w(o?))" o p!”) LI LT

| &

. . i '} ] ]
TR L I T A L L e L
S he equation v 1yt E gt i it ander 1orentz tmnsfornation.
O 0. Weite short nites on length contraction, ' Y writh 1 veloin
Ans ¢ Canslder two e of veferences & and &7, 1ot 57 fge ls moving relative 1o 5208 veirety

f { i A ( / ! o) coordinates
Foalong the tve direotion of X mxds, Lot rod of Tength /0 i present in & (e, f fies enied cootdinates
box,"and !

.,H\,u’ A ,’ “’{ 'rlu(’)

Lot the end coordinten of the vod we given by & franie be x, and x ),

whore v, = v, =/

According 1o Lorentz translormutions equantion, we hnve

(:l'l “’)
AN &) = =t ’
! Y H y
(/ v p——,
M 777774
{ ™,
wae ], wwcvms o

Substituting thewe vilues - eqn.(1), we

’ |
[T N S— | S

T A ey ' |
,l ~ ({"‘1! “,) ("‘\'l ”,) i ‘*.‘Jnl.’!ule-y/pu;lm 't ,.xwmuli:wmnuun

? Y Y VA4
1 1 f
[ : ¢ ) [ i t'”) ‘ Il

LAy =0 0= 1 The length of the rod i pame for the obgervers in S and 87 frame,

2,100 = ¢, 1= 0 the length of the rod it zero. Henee it wan concluded that no material body can
travel with velocity of light,

3,10 v is comparable to ¢,y 1= =5 is less than unity, Henee £ is less than /. "The length of the rod
appears 1o be small,
This is called length contraction,
Q. 7. Write short notes on Time Dilation,

Ans : Dilation means to lengthen, Consider two frames ol references S and 87, Let 8 frame be moving
relative to S with a velocity v along the tve direction of X-nxis. Let a clock is present in 87 frame, The
initinl and final time co-ordinates of an event with reference to 87 frame be " and 7,7,

3
j
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At! = I'., ["
he same event hay ditferent Hime coordinntes with reference 1o
A=y =,

hutra Tlat'nea
ftame. They are 1, und L,
From inverse Lorenty transformations

o1
2 (1!
2 ey
e = ANA fp = s
\/’“‘l';- \/z e
¢ o
TEERE 5.0 N
o y
v 0"
iy ] =~
\/ ¢ \/ u.?

My AY L 1 . . . . , S o
LIy =0, At = A", The time interval is same for both the observers in S and S frames,
2. If v ==

' ¢, Ar= o, The event that has occured is 87 frame has taken infinite time for an observer
in § frame, This is time dilation.

I
- (U .
3. If v is comparable to ¢ then \/1— 5 18 less than unity, Henee Ar > Ar!
(I o \

SOLVED PROBLEMS
Solution :

8. If rod travels with a speed 0.6¢ along its length claculate the percentage contraction.

1121 _

1-—  wherev=0.6¢
| P

=1 1_(().6:‘)“
\‘ ?

R
Percentage contraction = ——= x 100

I,:I\)I—().b’()‘ I,':()'(\)l

‘ I—;).él x 100 = 20%
= % contraction = 20%

observer on the ground. What iy its speed?

Solution :
=1 [1—3—}
o

["=100x 100 = 10000 cm
1= 90x 100 = 9900 cm

9. A rocket ship is 100 metre long on the ground. When it is in flight, its length is 99 metres to an

We know that

Here
and

2 99 . T i
£.9900 = 10000 || 1 - -U—, or — l g
e 100 |

('2
99x99 v
or 100 % 100 o |
v? 99 x 99 199
or — =

= = N
100100 100x100
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v=c———=3%]0
100

10. A clock showing correct time when at rest and loses 2 hours in a day when it is moving.
is irs velociry?
Solution :

09 [199 .
Ji = 8 % "‘3'-!—5{ =423 x 10" em/lsec.

At

At =
[]- v At! = 22 hours At = 24 hours
L
Y.
[
'1““”
\ c
{I_i\;_{__‘?_)g__l_?l
e?) \2d) 144
::1=1_1_21:_2._3~ L. .2;?=04
c? 144 144 c Vi2
= v=04c =v=04%3x10° =uv=12x10° misec.

The velocity is 1.2 » 10° m/sec.

I1. At what speed the mass of an object will be double of its value at rest.
Solution : We know that

4 2 mg

il v ) = ) L 2my = e

f ch Herem = 2m, 0 f{—‘“—L,} or

| - 1_ —

=)
(1- 1”_} Lo e
\'( Cf 2 or Cf =
4‘:’ 1 3 3 10 5
& -‘—— =]-—=—por V= J(;) «3x107" emisec. = 2.6 x10" em/sec.

s 4 4

12. If the total energy of a particle is exactly thrice its rest energy, what is the velocity of the particle

Solution : We know that £ = md’

<

Here £ = m“z.*” R | mur’ = or m=3m,

m
s e

\l

2%

T
1-.‘,J
- 4

e 1T 9
v e | o e g or
(1 2) or \‘ )3 Ty

The variation of mass with velocity is expressed as

c

v= (ﬁ) 7w -{‘éff{b “d = )(Im
9 :

.
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13. A particle is moving with 90% of the velocity of light, Compare its relativistic mass with rest
mass.

Solution : We know that

me= -——:-’_”i—)_u- = l = "-J -
‘/l—lli ny /- \’:
¢t ¢
o . B L ’
' ny » (0.9C 2 «/ 1-0.81 \/(T/‘) - ._.I___ = 204
1_(” - j 04359 T

14. With what speed shoult it be moved relative to an observer so that it may appear fo lose
4 minutes in 24 hours,

Solution : Given At =24 x 60 = 1440 min,
Al = Ar’ J4ad = 1440
=Y 1_3’_2_ = if v/c << 1 then
_—-'2‘ 2!
¢ c

At = 1440 + 4 = 1444 min

o
‘ =
1444 - 1440 | 1+

V1444 2 4x2

2% = po
=" = xc“ =yp=0,0745xcx2 =223 %107 m/sec.
202 1440 1440 , |

& & &
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5, UNDAMPED, DAMPED AND FORCED OSCILLATIONS

LONG ANSWER QUESTIONS

Q. 1, What is simple oscillator? Give the equation of motion of a simple oscillator and
ita solution?
Ans ¢ Simple oseillator 1 The particle or body executing simp
atmple oscillator,
Rquation of motion of a simple oscillator : Consider a particle
SILM about equilibrivm position ‘o’ along x-axis, . R
Lot v' ba the displacement of *p' from ‘o’ at any instant. The force ‘}* acting upon p 1S given

le harmonic motion is called a

p of mass m executing

hy
Fawg@)F=-s ey e o
Where K is proportionality {netor, .
According to Newton's second law of mohon, the restoring force on mass m, produes an
accalaration is

[}

F=m L 2)
7 dar® -
'rom equation (1) and (2)
2. " ”
(,;\z—lx (n) ——ﬁ—x.\*
dr? dr* m -
K . 2
Put —= (02 then d’x + (02 =0 . 3)
m dt"' '

This is known as the differential equation of simple harmonic oscillator.
Solution of the equation :

Let the solution be x =¢ e” ‘
Where ¢ and o are oribitrary constants. Differentiating above equation, we get

dx d’x '
2% ¢ o™ an,d—'—9-=coce‘“
dt Cdt?

Substituting these values in equation (3), we get
c e+ u)"'(' e =0 (or) cev (e +a®)=
(o + (n-) :

o =ty-w? =+jo where j= ,}( 1)
Now x = Cet/o : (or) x=Ce"™and x=Ce ™™

~

So, the general solution can be written as x = C, etiot Cs e Jot

Where C, and C, orbltrury constants.
Further x = C, (( 0s ol +j sin wt) + C,(cos wt - j sin wt)
(or) x =(C, + C,) cos wt + j(C, - C) sin o,
Let us put C, + C, =a sind and j(C, - C,) =a cos}
.. x =asing cos ol +a cosd sin ot (or)  x=asin (ot +¢)
This is the solution of the equation.of simple oscillator,
Q. 2. Define damped harmonic oscillator. Derive the equatwn of Motion of damped
harmonic oscillator. Discuss different cases.

Ans : When a body vibrates in some medium, the medium offers some resistance to the motion
of it. As a result the amplitude gradually decreases and the body finally comes to rest. Such type
of motion of the body is called damped harmonic motion. Such oscillator is called damped harmoni¢
oscillator. :

CX Scanned with OKEN Scanner



Semester - 1 ' 51
PHYSICS (E.M.)

' Exam.ple If a.simple pendulum is displaced from its mean position and left free it oscillate
with decreasing amplitude and finally comes to rest.
Equatlo.n : When a system is making damped oscillations there are two forces acting
1. Restoring force which is proportional to the displacement (R.F. a-y).

“. . : . . d
2. Frictional force which is proportional to the velocity (F Foo- d_Jtl] - !

“RF«-y. RF=-sy
where s = R.F per unit displacement.

dy rd |
F.Fa ~ar S~ F.F = ﬁc;fwty— (r = F.F per unit velocity)
. . d2y
According to Newton’s IInd law Force (F)=mx F7E
d?y dy d?y s r dy
Sm X =_gy—pr>2 2 By L
a? . 2 o dZ . m’ md
Put L=2kand i:mg
m m -
d?y . dy | ~ ,
— 4+ 2=+ 2 =0
gz T tey=0 1
This is called differential equation of damped harmonic oscillator. ,
The solution for equation (1) will be of the form y =Ae* . ’ ST @)
where A and a are arbitrary constants. :
Differentiating equation (2)
2 .
D_ Ace™ and ay_ AaZe™
dt dt? : ,
Substimtmg these values in equation (1) .
AcZe® + 2RA0e™ + 0P Ae™ =0 or Ae*(0? + 2Ko +0?) = 0. As Ae* =0
o +2ka+0?=0 _ ' ' _ Rl L - 3)

The solution is o =k +VEZ —0?
From equation (2)
(—kﬂ/k?—m?); © (k- Ko )t

y=Ae : +Age

where A and A, are arbitrary constants. .

Case (i) : Over damped motion : If ;2 > ? k2 —? is real t
and less than k then both the powers in equation (4) are —ve. Hence the ¥
displacements consists of two terms both decreasing exponentially to zero

with out making oscillations. This type of motion is called déead b.eat or
over damped. This type of motion can be seen by a pendulum moving in

a thick oil. ' » ) :
Case (ii) : Critical damping : If k%~ 0’is substituted in equation (4) the solution does not

satisfy the equation (1). Hence consider that JEZ — 2 =h (where h is a small quantity)
- Equation (4) reduces to , j
3= A Aol = e A, + Age™] = e (A, (14 htr....) + Ap(1-ht+....)]

1

Fig,

e (A + AR Y R(A - Ag)r] =M [pral] ®

where p=A,+A, g= h(A-A)
From. equation (5) as ¢ increases (p +gt) increases. But the factor e* decreases. As a result
the displacement approaches to zero as ¢.increases. Such a motion is called critical damed motion.
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Case (iii) : Under damped motion : If ¥ < o,
then /2 — 7 isimaginary.
VR —0f =il —k? =ip

where i =\/ﬁ and P=vo© -k

. equation (4) becomes

y= APt A (-heibl = ("""'[A,c"'" +A30‘”"]

|
Such a motion can be exhibited by ammeter and voltmeters, ‘ ‘
!

= e M[A(cos Pt + i sin )+ Ay (cospt - isinpt)]
=C_kl[(A1 +A,)cosPt+i( A, —A;,)si;.t,[}t] '
PutA +A,=asin¢ i(AI—A2)=acos¢

~y=e[a cos Pt sing +a sin pt cos¢| y= e“k’[a sin( pt+0)]

ye ?—lcr[a sin{mt " ¢}] ' T )

This equation (6) represents the damped simple harmomc motion with amplitude ae*
The time period of vibrating partlcle

opo2m__ 2m
: : [3 (02— k%)
This type of motion is the motion of a pendulum in air.
Q. 3. Define forced harmonic oscillators. Derive the differential equation and gwe its
solution. Discuss different cases.

Ans : The free vibrations produced in a body die away after some time due to dissipation of
energy. But if some external periodic force is continuously applied on the body, the body continues
to oscillate under the influence of that force The v1brat10ns of the body are called forced oscillations
or driven oscillations. :

Equatlon of forced v1brat10n When ever a body is makmg forced oscillations there are
three forces acting on it. .
1) Restoring force, which is directly proportlonal to dlsplacement and oppositely directed
ie;, RFoa—y;, RF=-sy
where s = R.F per unit displacement
2) The damping force which is proportlonal to the velocity and oppos1te to the displacement.

d
~D.Fa- Cfiy D.F = n (r =D. Fper unit velocity)
' 3) The external periodic force  F sLn pt. '

where F= max.for_ce 5‘% is its frequency.
e T I dy . .
So the total force acting on the particle is given by —sy - rgt— + Fsin pt
) - md®y
~. According to Newtons IInd Law the force I = P
md?y dy .. . , md’y dy
——=—=-8y-r—+ Fsinpt 0 ——LisyrrZ2oF
di2 Y d imnp r a2 Sy 1t sin pt
d? y s rdy F . - s F
—y+———=—sinpt Put ==’ and ——2k b
o al m I m dt m K : m and f
d%y dy 4
@Y ok v wly=fsinpt T VR S P s RPN ST A @ |
dt® dt | |
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fro 14 . o . ) ‘ ) ’ " o s
Phis s the difforentin coation of motion of the paetiele,

'”’If" m!llll‘imf for thin equation will be of the form e Auin(plou) viennnild)
Differentinting oL (2) we hnve

([_\i &' Avws / (/l’y by,

7 CoB(pl=a)p=Ap con( pt- ) niul (/,}, Ap™ nin (pt )

Substituting these values in cquntion (1)
ApTain(pt - u) . hApcos(pta) v w” Awin(pta) =~ nin /[”I”{(”, 2pileh

- ] g 3
RILS. = fing pi a)eosa [ eon( pta)nino
1 [ il &
Comparing the coofficion(u of win(pt- ), we el

*AI)'”"O n A - [ ecosu Al = p?) = feon P t:)
W /('()H(t = /\(m‘” . ,,'”)
Comparing (the coofficients of sin (- ) 2hAp - [nina itivivei(4)
Squaring and adding equations (3) and (4)
[“cos™ = A (0" - p?)? [ uin® - Al A7 p?
D) o o 00 0o,y 2 ) 4 /”
ST EAT (0" - pt )t 1 dREAY D A" B e s
[T =A (0" = p" )" +dk“A?)p (0f w p? )it
wA= A e
\/(m‘ - p? )2 ak? p? ' e Y
This is the expression for the resultant amplitude.
While on dividing eqn. (4) by eqn. (3), we have
2kA 2hp 2
tana= 5 L 2y 72 ’ 7 or 9= m"‘l(““&‘:ﬁ‘?:“J ........ (6)
A(w” = p®) (0°=p°) (0w ~p*)
Substituting the value of A from eqn. (5) in equhtion (2)
_ / ; |
y= sin( pt-uw) » )

\/(mg = p2)2 w4k p?

Different cases of amplitude and phase:
Case 1: When driving frequency is low p <<w. In this case the amplitude of vibration is given

by

A= / i
- ¢ ¢ D « = aanr-y =can
\/(w‘Z - pz)z + 4k [)“’ w?

20
0 = tan™! ——-—-}LI—JT ~tan~1(0)= 0
- (w? = p~)

Case 2 : Whe p = w i.c.,, frequency of the force is equal to the frequencey of the body. In this

and

cae, the amplitude of vibration is given by

/ F [ S = i , 2k = L and P w

m n

B 2kp  rw
( ' . 1
also 0 =tan™! [%J =tan~"(w) = -

Case 3 : When p>>w i.c., the frequency of foree is greater than the naturla frequency w of the

body.
, N SR
In this \/,_,’—‘._4-1.-3,,3 S mp?
: - 2K "
and 0= tan”™! _‘;J_IQ)—,‘ = mn”’(_T—\-] ~tan'(-0) = x
: w* - p© I

L

RN T,

SUDNNURINISISR SRS L T T
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SHOIRT ANSWER QUESTIONS

aracelerintios ¥
Q. 4 What inaimple-harmonte motion? What are ita phywteal characteri
”““h Lht, dhes e """'Hl'.ll,“

Semester |

Annc: Stmple harmonde motion s When n particle (or) n hiody noves _
i nlwayn directod In\\’nl‘u[n n fxed point and varies divectly we it dintane {rom that point, the
particle insaid to exoeute H LM,
Charncoterstion of §,11L.M e B M
1) Displacement ¢ The displncement of any particle at any instant executing .51 18

piven by :

X sin (ol V) sl
The maximum digplncomont, from the menn pogition is enlled nmplitude, » ,
2) Velocity : Tho velocity V of the oncillating particle cin be ohtained by differontinte

equation (1), thuns,
V ‘1; coamcos(ml ) m\/(lv"" x”
(

at x = 0, the velocity in maximum = am, The velocity in zoro ot axbreme posttion,
8) Periodic Timo : Timo taken for n complete oscillation in ealled ag periodic time,
m o |displacement
T = 8 [
acceleration

4) Frequency : The no. of oscillations made in one second s ealled frequency.

11 \/ZF
N o 5 [
T Z2r\m

5) Phase : The angle (wt -+ ) is called the phase of vibrator.
Q. 5. Explain the amplitude and sharpness resonance.
Ans : Sharpness of Resonance : The rate of fall in amplitude, with the change of forcing
f rirqucncy on each side of resonance  frequency is called sharpness of resonance. Smaller is damping,
sharper is resonance. '
In the case of forced vibration the amplitude

A= /
Jo? - p?)F 441 p* | ‘ 0
B 2kp
and a=tan”’ (————-—] ........ 2
w? - p*) (@)

The expression (1) shows that amplitude varies with the frequency of the force p. Fora
particular value of p the amplitude becomes maximum. The phenomenon is known as amplitude
resonance. The amplitude is maximum when-

if J((,,Z ~p?)% + 4k?p* is minimum, A is maximum,

d IV T, gy :
or, ;1'1; (0 = p®)* +4k*p” =0 or, 2Aw® - p?) (-2p)= ,,4,”‘2(2[)):0
or, w? —1)2 =2k* or, [)” =m? - 2k?

or, p=vyof-2k | | )

. . . " p i
The amplitude is maximum when the frequency on 18

= 7
Jo© -2k .. o
———-5—— . This is the Resonance condition.
i

E
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i : ’ 2 _op2
'This gives frequency of the system both in presence of damping i.c. -(1)*2—2& and in the
A n

. ®
absence of damping o If the damping in small then it can be neglected and the condition of

maximum amplitude reduced of putting condition (3) in eqn. (1), we get

4 = S a

= f ' _ f
h V@ -0? + 267 7 1 4k7 (0 - 217) J620? ~a)  2hf(o? 17

f

k(P k) o O pP=e’-28)

and for low damping it reduces to

A ~ —}-t_
max — 2kp
Showing that A -« as k0
The variation of amplitude with forcing frequency at different
amounts of damping are as shown in the figure curve (1) shows when
there is no damping (% =0). In this case amplitude becomes infinity at-
p=o. This is only an ideal case. The curves (2) and (3) shows the Fercing frenuency —
effect of damping on the amplitude. ) | Fig.

Q. 6. Define quality factor. Explain.
Ans : The quality factor is defmed as 27 times the ratio of the energy stored in the system to

the energy lost per period.

b

No damping
~

Low damping Sharp resonance

Flat resonance

Amplitude A—>

Q
g

Energy stored in system
Energy lost per period - : B

Quality factor= Q = 2r.

| E
If Pis the power dissipated and T is time period @ = 2. BT
. E
If ¢=relaxationtime P= -
~0=2n E =-2——E:mr . - 27
E r whose @ =T oL Qi=or

=xT
If- @ is low, damping is high.

\

If @ ishigh, damping is low
Q.7. Write short notes on logarthmtc decrement of the oscillator.
Ans : When an oscillator makes damped harmonic motion, the dlsplacement decreases

exponentially with increase of time.
The decrease of displacement of a damped oscillator in one second is mdlcated by the logarthmic

decrement.
The amplitude of damped simple harmonic motlon is represented as a ™

T
When =0, the amplitude is max (a,) When - ¢ = 3 the amplitude is max q,

When t= gzz the amplitude is max a, (where T'is the time period)

_k(%); Lay = Aoe—k(i})
G _a; _3; +(3) —d

From the above equations
a ap 3
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where d is called decrement.

The natural logarithm of this decrement is called logarithmic decrement (3. ) of the oscillator

l=’lOg‘.d (?;‘:d iep:—i:___:_._':e
Q a Ao» a a Qg

o A=log, ——O-j = Iogr(_i) = [ogc(_&.) 1 2
a, a2 Qs '

Q. 8. Define relaxation time? Derive expression for it?

0 L of its original value is called
e

« relaxation time. The expression for total énergy of damped harmonic oscillator 18

Ans : The time taken for the total mechanical energy to decay t

E= ng e M Whent=0; E=E,
“Ep= i) sq? . S E=Bet (1)
Whent=rt; E=—2 ' )
e
Moving this substitution eqn. (1), we get
E
. 20 - E,e™  or 1 _ o 5 el =g
€ ' e ‘ 1 - :
1=2kt D a g : A SO (2)
) 2k ' .
From eqn. (1) and (2), we get
~ E=Eye . E=Eoe"1=£72
-. Power dissipation = P = 2Ek : = E. e
al k
SOLVED PROBLEMS

: o _ n
9. The displacement of -a particle making S.H.M is given by x = 0.5 cos (IQTCt +=3') calculate (1)

-

amplitude, (2) Frequency, (3) Phase, (4) Displacement after 1 sec.
Solution : ) ' '
x=0.5 cos(l Ont + —g)m
Comparing the given équation with the standard equation

x=a éos((ot +¢)

(1) Amplitude a =0.5m @  Frequency n= 120?’“ — 5Hz
(3) When ¢ = 0, initial phase = -’33 = 60° '
Phase angle = (10nt+% = 107rx1+%
when t = Isec =10n+§-=600 '
(4) displacement x, whent =1 .
x=05 cos(lOn x1+ —:7) x=05 003(31 —;—)
x=0.5c0s60° x=0.5%0.5=0.25m

10. A particle vibrates simple harmonically with a period of 2 sec. Find the amplitude

if its max. velocity is 10 em/s.

2n
Solution: Vmax =a®0= a[?) ,
Umarl vl 10%x2x7
".lg:t -3 T =2sec s V,,,=10cm/s a=. ":?‘L;r e — 318 em
11. The amplitude of seconds pendulum falls to half of its initial value in 150 sec. Calculate
the @ - factor.

Solution : For damped oscillator the amplitude after time ¢.

S.a=

|
|
]
|

-— —at
a=a,e
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) o i
It whon t= Tl « = A'l.,‘ . '['I -ty 0 e lhil
¢ wi (i, "

1o = log 2= 2000 ln/,',“ d
0N Loy, 2
16()

= 000464

/

a 000462 m MO

Relaxation time ¢ -
ot 2t 2w w00 216

0 ) ’
2" 3 v

(|) =

Q) 149.8,
12 The Qualue of a spring loaded with 0.3 kg 1n 60, 1f 1t vibrates with a frequency of

-

2 Hz, Calceulate the force conatant and the mechanical renintance,
Solution: Load attachod to the apring (m) = 0.8 k.
Q=060
FPrequency of vibration n = 2 11z

k
I'rom n = \/ W =2un =20 A= 10.600 RS

2n \'m
Force conntant, k = 4 nm= 4 (3, 14)" (2)(0.8) =473 Nm! .
. \ mo 008« 1000
Mechanieal rosistanco r = 'QI" TG0 = 0.0028 gy !,

13, The quality factor Q of a sonomeler wire is 2 x 10", On pluching, the wire emits a
note of frequency 120 Hz, Calculate the time in which the amplitude falls to (1/¢°) of

the initial value.
Solution: '

The quality factor € is givoen by

Q= ot = 2nnt = Zn X 1200 = 240 v sec’

Given that @ =2 x 107
L2 x10P=240 1 or v =(2X 107/ 240 n or
1 = 2.6562 scc, |

The instantaneous amplitude of a damped oscillator in given by a = a,e ™.

Al t=0, a=a,
Lot after a time ¢ =x, the amplitude falls to (1/¢%) of initinl value, thon

1 ' , e
- = e : or ¢*=¢ ™ or
({!:’, (1" (l'l/ ¢ .

' e
2 = bx or x-—-};

S

Further 1 = 2!; or b= = 1

x =41 =4 x 2652=10.608 sec.
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6. COUPLED OSCILLATORS

LONG ANSWER QUESTIONS ) 1l :
Q. 1. Obtain the normal mode and normal coordinates of two identical penduliums with

their bobs connected by means of elastic massless spring ? e .

Ans : Consider a system of two identical simple pendulums A and B, each of r‘n.lﬂﬂ 71 and
length [ coupled by a spring of force constank k as shown in fig.(2 ). Here the separation between
the two bobs is such that the spring is relaxed in equilibrium position.

Consider the situation in which the system slightly
disturbed from the equilibrium position as shown in
fig.(2 b). The two pendulums begin to oscillate. Led x,
and x, be the diplacements of the bobs at an instant of

A B
time ¢. The spring will be stretched when x,>x_and com- Gut X o
pressed when x_>x,. The magnitude of the tension in the m *{Xa\‘* (b) mro™S
spring is k(x, - x_ ). If x, > x, the tension will act (a)

against the acceleration of pendulum B but in favour of the acceleration of A.
Considering bob B, there are two forces acting on it:

(i) restoring force or return force due to gravity. This is equal to - m g sin 0 =-mg (x,/1).
Negative sign is used to show that restoring force is opposite to displacement x,.

(ii) return force due to stretching of spring. This is equal to — & (x, — x,), where k is force
constant of spring. This is also opposite to displacement X,

The equations of motion of pendulum A and B, for small oscillations in a plane, are
d’x, mg d’x, mg

These equations are not of simple harmonic motions because the acceleration of the pendulum

1s not proportional to its own displacement. When k = 0 (the spring were absent), the two pendulums

will execute harmonic oscillations whose angular frequency is given by

w, =+/(g/])

In terms of @,, the two coupled equations are '

2 .
e Em ) o
—Ee-olx-kim-x) L ®

In order to find out the effect of coupling on each pendulum, these equations must be solved
for x_and x,.
Adding egs. (1) and (2), we get
2

-%_2 (x, +x,)= —Awoz'(x_a +xb)

gg’z (xa+xb)+a)02.(xa+x.b)=0. g e (3)
i xe0 weexenrn

Subtracting eq.(1) from eq.(2), we get
) (5, —x,)=-a, (x,—x,)-2(k/m)(x,~x,)
d? . kY,
— @x-x)+| o, +2—|[(x,—x,)=0 5
dt'(b i) ( o, m)(b ) @ |

7
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./’\’ '[“'1‘ u/'
' A "

]
i\ v , ;A
co by N where g Ly
Wi 7
\ 1 ) ) ¢ } l It {
g, GO e GO wre Bl equantions of stmple avmonie aseillabions, T e, (), the sariablo
N while the viiahile i o, () s (v, v ),
A= 3, Gimen, the motion i eamplotely deseribod by o, sines oe.(4) yiniishes, The

J\" O where X' (v, 5,0y

“”HNIH\' h'“il\ll*!!l‘l\' ol Hm'i”ullmm Ji privon “V

1
) = i), = ( / ] ol
Foth tha ponduhams mve wlwaiys i phise nnd spring hins the pabirnl length throughout the
Al ' 1 { "Wt { A
motion, CEhe speiingg s neither compronied nor extending while swinging). I'hig is the first normal
mode (e phawse mode), s = ox nball Tinew, the mobion s completely degcribod by og (4)
Bineo of (0 vanishes, Tn (him cnee, e mngalore frogueney is given by

, T
o= m’ h / )
y= y , i (B) qun /L/awxi.m

&

I

]

‘ ) y q ]

8o @, =y L the frequency of osetllntion of the couplad systom s !
ceeator than the natural froquenaey of the pendulum when they nre sepa: /‘(.)’MGGWAT‘L’
ate. The ont of phare mode fnahown b g, G3), This i second normal mode, aa ->
Normal moden nolution t'The normal modes nee roprosentesd by oscillations of variables (z,
vy and (v, v ) Thene aee enllod Normal coordinalen,'The chingen in the values of (x, + x,) occur

v ) and vies veran, The fraqueneten of individunl normal modes are called
seillate with

X

independontly of (v, -,
Normal frequoneion, 'The eharetorintio of normnl froquency is that both x, nnd x, can or
that frequency, The in phare mode and out phase mode nre enlled the normal modes of coupled

ayvatem, ‘
The oquationn governing the motion of the pondulums nre
' 1)
AN K k d’x Pl k
4 @, X, k== (X =X,) nndl . A/“ o))" Xy === (X = X,)
dr n dt’ m

To find out the normal moden, lob i nalve thene difforontinl equations, Copsider that a normal

mode exinti at an angular froquoney @ and phare constant, ¢ . "Thin implies that both the pendu-
Jums move with o simple hnemonio molion nt snmoe nngular frogquency @ and same phase constant

¢ Then
X e Ceon (o f 1 4h) ()

and a0 Cleon (@ f ) vn(B)

where the amplitudes Cand C' (in gonoral) may ho difforont.,
[Prom eqn. (1) and (), we have

X ) d’y, ,,
d '\," W’ Ceos(wt 1) and "j» =’ X,
dt’ ot .
) F ’\ )
Henco, W\, M, X, o (%, =x,)
m, Ay B Ay n(®
or 0 mn " )
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and (a)o2 —~wr+ ﬁ) X, = __k_ x, Ca P (10)
_ m m
2 .
From eq. (9) Xy = {a)o - +(k/ m)i _____ (11)
X, (k/m)
Similarly, from eq. (10), we have.
e b W), o ™ (12)
X, {a)02 —a* +(k/m) }
From egs. (11) and (12)
{coo ~ +(/c/m) (k/m)
(k/m) T 0+ (k/m)
or - (0 -0 + (k/m)f} =/ m
Hence  w) -0+ (k/m)== (k/m)
or 0> =, + (k/m) F (k/m) N |
So, we have two solutions for @ let us call them as @' and @''- Then
0" =, e ¢ , oot (1)
and a)”z—a)o +2(k/m) JUREIRIRTE (PUEC T e (14)

Thus the positive square roots of these expressions are the two normal frequenmes of the
system i.e., two modes. The angular frequency of mode 11is ' while that of mode 21s @".

The conf1gurat1on of mode 1 can be found by substltutlng a)o =" in eq. (11) or eq. (12).

Thus Bl : .
LA
Xy ) it C)otol f , .....(15)
The displacement of oscillators in mode 1 are given by o
L)y =Ceos(@rtg) (16)
and (x,),=Ccos(@'t+¢) .~ (17)

The configuration of mode 2 can be found by substituting ¢? =*

in either eq. (11) or in eq.
(12) Hence |

[x,,] ‘_(Q‘j __1  |
Xp mode2 C mode2 ' (18)

For mode 2, the displacements are

(x,),=Dcos (0"t +¢2)— |

(x),= -Dcos (@"t+¢,) - (20)
The most general solution is given by the superposition of two norma] modes, i.e

x, =(x,), +(x,), =Ccos (@'t + ) + D cos (&"t + ¢,) .

and x, = (%), + (x,), = C cos (@'t +¢) — D cos (0"t + ¢,)
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Q. 2. Obtain the equation of motion, considering the case of N-coupled oscillators and
derive the equation for the frequency of the system ?
Ans : Consider a flexible elastic string of

negligible mass. Suppose N indentical particles, Fixed —_—
cach of mass m and equally spaced at adistancel. 4 m m m m m &
are attached to the string as shown in fig.(6a). Let . 1 2 a3 N-1) N b
the string is fixed at two points, one at a distance 0 > = @ | | fe N+

I to the left of first particle and the other at a dis-
tance  to the right of Nth particle. The particles
are labeled from 1 to N or from 0 to N + 1 if two
fixed ends are considered. The two particles at

fixed ends are considered as if they were particles
of zero displacement. Fig. (6b) shows a configura-
tion of p, (p - 1) and (p + Nth particles at some , :
instant of time during their transverse oscillation. Fig.

Here it is assumed that the amplitude of these

oscillations is small and initial tension 7 in the

string does not change as the particles oscillate.

Equation of motion : Here we focus our attention on pth particle together with two immedi- _
ate neighbours (p — 1)th and (p + 1)th particles. Let the displacements of these particles from the
equilibrium state be y , y, _, and Y, respectively, wherep =1, 2, 3, ....... (N-1),N.

Referring to fig. (Gb) the resultant y component of force on pth particle is

F,=-Tsin @, +Tsina, or Fp =-T tan ap_‘1+Tt-ana.p
| (vtana, ~sina,) ‘ . (D)
From figure (6b), tan o » =J’p+l_))p_. and ' .tan a,, =y—p_l—yfi
Therefore, F, - —?— »,— };,,_1) + % (y,,+; ~-¥,)
or | o F, =Z[yp+l+yp—l_2yp]

This force must be equal to mass m times the transverse acceleratlon of pth partlcle Thus
equation of motion of pth partlcle can be written as

dy AW
m dtzp ET[J}PH +}..)p-1 fzyp]
3 dzy N :
or e ‘-’;;7[ p+1+J",,_1‘,2y,,_] ..... D)

This is the differential equation for pth particle. By putting p ="1,2',3......N, we can construct set
of N differential equations. Here we have the following two boundary conditions.
x =0, =0
and x=(N+ 1)l yN w=0 . @)
Normal modes : For normal modes, let there exists a mode with angular frequency @ and

phase constant ¢ .In normal mode, all particles execute har monlc oscﬂlatlons with same frequency

and constant phase ¢ . Hence for pth particle, we have

y, =4, cos (@t +9¢) E)
where A, is the amplitude of harmomc oscillations of pth particle. Similarly,
y _,=A_, cos (wt +9) . and Y, =4, +1cos ((ot+¢)
p-1 "Tp-
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d’y,
I'rom eq. (8) “—",-'-5’-— = - ? AI, cos(art + )
dl

Substituting this value in oq. (1) we get

Al

-’ AI, cos(ar +¢) = —I—l~ [A I A/, |- 2A,)]c<)s (ot + )
m

pil ’

r ml ~
a o’ 4, = - Ayt 4,0 = 2/‘/;] or "‘ ‘(l‘)‘,li.“" 4, % Ayt Ay =24,
| 2
®“ml '
or A, + A,H 2[2"‘ : ; ]A,, ..... 1)

According to boundary conditions A,=0and Ay, =0.Lq. (4) represents a set of N equations
which have to be simultaneously solved to give the possible mode of frequencies.

General solution :

2 ‘ s ad
AI)—-] +A[Hl =9 w ) /i
I . where @, =—
A,, W, ol
2 2
Ap-l + Ap 1L 2(00 - ) (r)
- 2 p=12.N) .. 5
AI} a)o . "

For any particular value of @, the right hand side of eq. (5) is constant and is independent of
p. Therefore the ratio of left hand side must be a-constant and independent of p. Let us agsume that
the amplitude of particle p can be expressed as

Ap=C sin PO | ' L e (6)
So that A,_,=Csin(p-1) 0
and A ,,=Csin(p+1)0

A _+A . =Clsin(p-1) 0 +sin(p+1) 9]

» /

=2Csinp@ cos

A, +A4,, 2Csin p0cos0
p-1 Pl = s ‘
Hence A - C sin p0 2c080.. . )

iz .
The right hand side is independent of p. So tho'pmp(mod solution [eq. (6)] is successful and will-
satisfy all N equations. The value of () can be obtaied by applying the boundary conditions le.,Ap=

Oforp=0and P=N+ 1. This condition will be satisfied if (N+1)(is un'integml multiple of ¢ i.c.,

(N+1)0 =ni o (r=1,2,8..0)
_ ni
(N+1) e ®
Substituting thq value of ( from eq. (8) in cq. (6), we get
| [ pnm | '
A,=Csin | N+ 1 T e 9)

Now the allowed frequencies of the normal modes can be determined from eqs. (5) to (9), we
have |
|

i
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Aot A, 2m) - nr
L 0 2 cos
."” (l)“J ' N i1
nn ) 2 nn
. P Ry A B : " =2m," |1~ cos| ——
o Al =" Q" cop ( N i IJ ot ’ "y N+
: 2 4 ) nn
or o A, .-un‘( (10
aNan)| ’
; nn
or = 2, 8in - l ..... (11)
AN 11| '

Ineq. (9, difforent valuge.of n define different normal mode frequencies, So, in general, eq. (9)
enn be expressed an '

NETHR
M, = 2, §in { ——— ‘
0 {2(N'|'I)I A (12)
At each frequency x,, the pth particle has amplitude
A oo 1217 ]
, = Cain l(N—I-I)f ..... (13)

SHORT ANSWER QUESTIONS
Q. 3. What are coupled oscillators and give examples ?
Ans : When two or more oscillating systems are connected in such a manner as to allow
motion energy to be exchanged between them, Such systems oscillations are called couple oscilla-
tions and such oscillators are called coupled oscillators. Coupled oscillators occur in nature or can be

found in man made devices.

Lddd it LLLYLLLL
, m m o r l ! 3
}/UU‘S'U\OWWW Cak o=
; C‘[L‘g SLTE
k .
m&fm\{bm L
(@) (b) o)

Some examples of two coupled oscillating systems are shown in fig. (1) fig (1a), the bobs of two
simple pendulums are connected to each other by means of a spring. Fig. (1b) shows two masses
attached to each other by three springs. Here the middle spring provides the coupling. Fig (1c)

shows to to coupled LC circuit.
Q. 4. Derive the wave equation of N - coupled oscillators ?
Ans : Consider n coupled pendulums, In fig, (8) only (n = 1th, nth and (n + 1)th pendulums are

shown, ‘
Lety, ,y,andy,,, be the displacements of (n — 1)*, n™
and (n + 1)* masses respectively, Now we shall consider the
resultant force on n mass. The following forces are acting on
the n mags :
(i) Restoring force due to gravity. This is given by
—mpgein ==mg@,/)=-m (/1) yn

foof oreenf [ SRCTIR |
yn -1 yn Yn +1

" . . 2
=-—m (Unh Y where @, = ([.,’/l)
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n' mass. This can be derived as :

“where k is force constant of the spring.

SHYSICS (EM:
64 ) 2

(i) The right hand spring increases the displacement, of

stretching of the spring =y -y, !
Force that tends to increase the displacement =k (y,,, ~¥,) |

. . hig cs » derived as :
(1ii) The left hand spring decreases the displacement of n™* mass. This can be
stretching of the gpnng =y, =),

‘. Force that tends to increase the displacement =~k (y = Y- )
Thus the resultant force on n mass is given by =—m (z),, x, + k (Y — yn) =k (Y, - V1)

Now the equation of motion of n mass is given by

——_d‘- ‘ . . .
m o =—m (002 Votrk,-y)-kG, -y (1)

According to Taylor's series.

'Oy | 1 , 0%
ynﬂ(t)-:y(x-*-a,t):y(x,lt)+a —&(x?t)+5a25;2—(x,t)+ ......
Similarly, | Y, (t):y(x_.a’ t)=y(x,lt)_a%(x,t)+5a2—5x—);-(x,t)+ ......
So we have
» oy 1, 32)’ . : '
n+l n:a_+_ yorTy C eeees (2)
Vi " B 2t Pt ‘ '
- | » 1,3y -
d ? n Yy =a T . e eeens 3)-
an e L~ | ~®
From egs. (1) (2) and (3), we get
d? ' 0
m dJ;" =—ma)02 y(x, N+ka —a—x);—‘(x’t) ,
dzyn .z . ka2 ‘_azy :
i dr* =, y(x,t)+. i _ax_z(x’t) R (4)

- Ans:

This is wave equation of n — coupled oscillator.

SOLVED PROBLEMS

. Sodium chloride molecule has a natural vibrational fréquency 1.14 x 10 Hz. Cal-

culate the interatomic force constant. Mass of sodium atom = 23 a.m.u. Mass of cI
atom = 35 a.m.u. (1 a.m.u. = 1.67 x 10?’kg).
Given v=1.14 x 10" Hz.

m =23 x 1.67 x 10 kg.

m,=35 x 1.67 x 10%kg. - \

mm,  23x35x(1.67x107")?
m+m, = (23+35)+1.67x1077

K=4x?v’u= (4 x (3.14)* x (1.14 x 1013)"‘ x 23.18 X 10
= 1188.07 x 10
K=118.8 N/m

reducedmass u = =23.18 x 10 kg

‘2. The CO, molecule may be represented by a system consisting of a central magg m, connected by
identical sprmgs of spring constant k to two masses m, and m, (withm =m) as shown in fig. Write

down the equations of motion of each mass and slove them for the two nor mal modes in which the
masses osc1llate along the line joinging the centres.

C} Scanned with OKEN Scanner



Semester - )

) o8 PHYSICS (B M
Solution : Equation of motions are
d’x 18 12 18
n = ""“'““-‘,g =2kix, ~-x.J O k C k 0
1 d’ 2
M | '
d’s, i X4} "Z:Q ' r'njr :
m,=—=%*=kix, -x)-kix,-x) 1 - o
d’ : l ' 4 W ".
dx
ﬁnd in = -'——.—»vj- = (% - ) Fi
‘ - X0 .
41'?),'3 (1:1‘} }
from theae eguntione m.={ 23 "33 iz _kix -2 )ileettingm =mj
vl odr dr’ ! .
dx k
or dr? "“;x where x = (x,-x))
m, = k/m,
Azzume

x. = Acos (it 4 ¢)

Xr:Bm‘f.“.“ﬂ xaz(.canr“‘)
Substituting these values, we get
moA=k(A-B) mf B=k(2B- A - Cland
ehiminating A, B and C from these equations, we get

mef C =k (B = )
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7. VIBRATING STRINGS
LONG ANSWER QUESTIONS
W1 Devive wave vquation of Transverse wave propagation along a atretehed atring
and gdve i generval solution )

A Conatdor wmteing strothod in e v diveetion alomgg which n tranaverse wave s travelling
with the shipo of the wive nt =0 b nhown in fig (n), ‘I'he pulio in doneribed by y = f(x) when time
),

\o‘ Y‘ ne gpfee b:A

[

o

] e
(a) Pulse at time t =) (h) Pultie at time t =1
Lot the pulie s teavelling (o the vight with o volocity v changod, After a time (, the pulse
venchoen w dintanee o wlong x-nxin shown in figg (h),
The wave form now enn ho ropronontad npy = f(x < of), I the pulse is traveling along the
negative xedivection 1o, v = f(vlor),

Thuw the wave travolling with o conntant #poad v along the x-axis can be represented by

yefwdony oo (1)
Wo now connider a apecinl enno in which vibration s o sinupoidal (or) hormonic function
then

YD = Awin Ky - ot)

2]
2
Lot un replneo x hy ¥ ( I\'b) thon

. an .,
V(N t) e A, ~l~[l~[a Ul HJ] < Ay sin(Kx o)1 2r) = Ay sin(K(x ~ut))

D)

.

So, the replacement of x by ¥ '[ % ) pive the same value of y, In gther words.

‘ D
A an (or) K 2
K
ko known ns wave numbor
B (l) is oxprowsod by y=futey (.)‘
Differentinting eq (2) partinlly with vospoet (o x Lwico, wo got,

oy L
‘l:l | '/‘/( il ox) & . ", | /l’(l), | l\')

o\ Ox ST T T (3)
Siminrly, differentinting (2) partinlly with respoeet to ‘¢ wo ot
‘ Oy ) ')3 ' T '
Lovrwrx) & S v oy
ot o , wen(d)
(“)"” y 0 ﬂ:" y
From eq. (3) and (1) wo got, 5 = V* et
- (3) and (1) we o o - (5)

' (
This is enlled the difforontinl form of the wave equation,
Simple harmonie solution of wave equation : Thoe simple harmonie
exprossed by

y(x, 1) =a ain (wt 4 kx) (or) Y, 1) =a cos (wt + ky)

LY ) = asin (it - kx) in tho funetion taking the wave advaneing in positive x-direction.

function can be
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Sz, t) = ann;(f—':t - —z—:x |
o)
2n
Where = 2zn = =5 where n is the frequency and T'is time period and K = 2z, where 5. s
wavelength.
. -
Sy(x, t)=uasi | ‘;'i(—l——ig
T3]
[2z (]
¥(x,t)=asin 25 ——-x
. l 5 J ....... (7)
But, v=n’ A (x,t) n| = (vt J:)—l
L v=nh=2 y(x,t)=asin|—(vt-x)| . ..
; S i B

Equations (7) & (8) are the alternative forms of S.H wave equation.
Q. 2. Describe the modes of vibrations of a stretched strings clamped at both ends.

What are overtones? )

Ans : Modes of vibrations of stretched clamped at both ends:
A uniform string of length [ having mass per unit length m and stretched by a tension 7.
The general solution of the wave equation is given by

y =a, sin(wt - kx) +a, sin(wt + kx) + b cos(wt - kx) + b, cost (wt +kx) e (1)
Where a, a, b, and b are orbitrary conqtants '
As the strmg is ngldlx supported at the two ends, we have the following boundary conditions.
1. y=0atx =0 at all time ¢, T e (2)
2. y=0atx =) at all time ¢
Applying first conditions (2) in eq. (1) we get

O =a,sin wt +a,sin wt +b, cos wt + b, cos wt

=(a, +a,) sin wt +(b, +b,) cos wt

As sin wt # 0 and cost wt # 0 Hence (@, +a,)=0and (b, +b)=0
Thus we have a, =-a, and b, =-b, Now eq (1) becomes
y —a [sin (wt - Iuc) sin (wt + kx)] +b,[cos(wt - kx) — cos (wt + kx)

=a [sin wt cos kx — cos wt sin kx] — [sin wt cos kx + cos wt sin kx];

+b [cos wt cos kx + sin wt sin kx] — [cos wt cos kx — sin wt sin kx]

=-2a, cos wt sin kx + 2b, sin wt sin kx.”

=(- 2a cos wt + 2b, sin wt) sinkx 3)
The solutlon now con51sts of two terms one depending on ¢ and second on x. Thus the first

bouﬁdary condition reduces the opposite travelling waves to stationary wave.
" Now applymg second boundary condition of eq (2) in eq (3) we have, sin wt # 0 cos wt # 0

hence sin ki =

Which gives the general solution for angle kI to be kIl =nn wheren=1,2, 3, ...........
As ] is constant K is limited to discreate set of values known as
Kn = flﬁ | wheren=1,2, 3 ..a(d)
U= "gi) wheren=1, 2, 3 _ 2 L ®)

From eq (5) that the string can have a set of eigen-frequencies or proper frequencies only.

The fundamental frequency corresponding to n = I is given by;

vV _1 /::i
wee=mly (6)
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///
.‘,.,J
Iy W

, i / /
'HN‘ //”l ’HH'HN/I;]I’ I”Iﬂ'u 1,’ hm““,”[ Y I4 ‘{)A/,;’, hy ’/// // *//// ; 7 //}
Overtones wnd Warmontes ¢ 1ad i oonuider the v of string fized ot S K £00s 54
" " 3 " i
plviekeed b thecmidedle i vilbirntes with nodos o e ends and pntinode st the middle, “Fhe b
cibbedd widey Whia condition known ne fundasmential (0} firsh, hsp st Vbt Sropanity 1k ghssy,

hy,
‘ «// / 2 ! R0 i "1/
Hl g = _,!."//7 )
W shringg de placked wt VAL of itg Jength, "Phe shring, Vbt i S—— 1

fwi _, ,

il ) Ul 3 1] T} 7 { 4 { 17 /l ‘
Lo sttt 'The Iu::uwr’u'v of vibiration of sbring, 1, 1 i by, ”(/, s ...’ A
y = ; JM AL , //”f..’”/f e
My ‘o I s
Fhies s endlad firet, over tunie or sscond harmonie,
When the string vibienbes in Whiree segmonts, the froquency of vibrasions yiren by

My = 4 ‘/7’ =4y
AVNm
This des eolled second over tune or thivd harmonie, |
0. 4. Dertve the exprension for velocity of o transverne wave along o stretched string?
Anw s Ddenl wbring @ A porfectly elastic, uniform snd flezible cord having very large in length
compured o its dinmoter is eallod Lol string,
Expression : Consider u shring fized hetwesn twro rigid supports under o ension 1" slony 4

noiw, When the string is plucked pe rpandwulm' b itss l‘m;/,i,f,f,mn e vibirabions sre seb up, L
ntany metant the sbring is ss shown in the disgram, Congider s sinsll element, A of ength dz, 14
the coordinates of A and Bhexond G4 dz), Lady be the digplscemant of any point in betweon A
and 3 Lot o und o, be the angles made by the tengion ot A snd Bwith Ze-azis, She tension st
A und I eann lw, rm,ulvml into components,
AL A ¢ The horizontal component of Vension =1 cos 0,
The vertical downward component = 1'uin 1 | } P omh
AL Bz The horizontal component of Tensgion =7 con ¢, M=
' + V) !
The verticnl upwurd component =1 gin ¢ , Fean, .
' i / Yoy Tdx visg
The horizontal components are nearly balanced, r "
. ’ 1 winky b \
- The vertical upward component =" sin ()/ -I'win 9, P SEviach WS ) SR W
Thé net, upward force = J'="1"4in 0~ 1" sin 0, sene(1) :‘f‘,/’ 3
H 0, und 0, values are small nin () ~’/un 0,: 5in 0, ="Tun 0,
A= an -1 Ton 1, =1 (’I(m 0,- ’Irm 0,
, by
Tant, (WJ . T ”"'“/ (‘;‘“J )
ox/, ’ X7 44y
A PR
o ( ay J ) ( VJ | g
) X/ 4 dy vx z )
(/)y
4 " " .y 1
Consider the term | 7, using Taylor’s expansion
OX7 5 4 dy
. 7 3
y oy 178 TRy,
2) a(2) 2L e ZE (e b
X V7, 27 93
xude Ny A/ 174
~ me ) ’
dy ay A . .
Negleeting high powers | 5 =\ 5] *| 77 |¢* A (3)
plect B POWCrs \og) ~— \ow/), \ox 1
iz e

. dy —_— y
Substituting the value of (a‘) from eqn.(3) in eqn.(2), we get,
F4
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If m is the mass per unit length of the string, the mass of the element AB = mdx.

&y

o

The acceleration of the element AB = s
&t

- The force in the upward direction = mass x acceleration

A2
" oy
~F = rndx...‘_"_
or?

- From (1) and (2)

r[ 4 de o (2%y

. From equations (6) and (7) v/ =

3y

\!l;

e

....... (5)

wnuse(8)

« This is the expression for the velocity of transverse wave in a stretched string.

SOLVED PROBLEMS

4.
Find the speed of transverse wave.

A string of length 8 m fixed at both ends has a tension of 4% N and mass of 0.4 kg.

Solution: [« &m T=48N
mass of string = 0.04 kg.
Maoss of string o 4
Linear density = length of string 8§ &= 00
] . , 3
Mo e = (005 kg./m
2001
T [49

- Velocity of Transverse wave V® \.;

m V0005
A steel wire of diameter 1 c.m. is kept under o tension of 5 KN. The density of steel is

v= Jgsp0 =95.99m/s

7.8 g/c.c. Calculate the velocity of the transverse wave.

FJT
Selution: v@ \,;;

Tension T=5KN=5x10°x 10° dyne

F a5 cm
Radiue of the wire r = S¢m = -

g o~
= =5 x (15 x05 T8 gm/cm

Linear denaty m

Velocity of transverse wave (1) = 9033 cm/sec.

Linear density m = nre

Density of wire e = 7.8 gm/cm’

g i » 23 5
T {107 %10° =7
v |

Ym ~ \22:05x05-75
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. i si 400 N,
6. A steel wire 50 cm long has mass of 5 gms. It is stretchefi wlt.h a tension of
Find the frequency of the wire in fundamental mode of vibration.

1 T
Solution: V= TQ—I E

Here, [=50cm=0.5mm=5 x 10~ kg/0.5x 10 kg and T = 400

ve =Ly |29 _ 1 [1500x 102

2x05 \107° 10

.. . e . ire increased b
7. Two similar wires are under same tension. When tension in onedwlrr vecond Finz
6.09% and the two wires vibrate simultaneously, 6 feats are heard pe .
the original frequency of the two strings. .

Solu.tion : Let v, be the original frequency and after loading further,1* v, be its frequency. In

6.09 TI _ 106.09 T,
100 . 100

1 T,J o ma 4 .
=—\/ Y R e o 1
Hence ' = (m ’ | )

1 ( 106’.0.9T1)

ol
2 272\ 700m

thiscase - . T, =T, +

Dividing eq. (2) by eq. (1),_Wé gét-

Uy (106‘.09)'_10.3_103 ' 103 '
v, 100.) .10 T 100 V2T 7oV S e ®)

. - 103
Given CU,-U, =6 .'.=mvl -0;=6
3u=600 - v =200Hz

8. The fundamental frequency of vibration of a stretched string of length Im is 256 Hz.

Find the frequency:of the same string of half the original length under identical
condition. , oo o

Solution : Fundamental frequency n , = 256 Hz
Length of the string l,=1m
If the length changes to 1, =0.5m
Let the frequency be'n,
From the laws of transverse vibrations

nlll = nzlz
s AL 28X ot
2 12 5

[ e R
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8. ULTRASONICS

LONG ANSWER QUESTIONS
Q.1. Write an essay on the production of ultrasonics. )
Ans : There are two methods by which ultrasonics can be produced 1. Magnetostriction method
and 2. Piezo electric genetor method. '

1. Magnetostriction Method : In this method magnetostriction principle is used .

Principle : When a ferromagnetic material in the form of a bar is subjected to alternating
magnetic field, the bar expands and contracts in length alternately. This means the rod make
vibrations. . '

The alternating magnetic field is produced with the help of an oscillatory circuit as shown in
the diagram. By this method ultrasonics of frequency 300 kHz can be produced.

The experimental arrangement is shown in the diagram. XY is a Ferromagnetic bar, clamped
atits centre. L, and L, are two coils surrounding the bar. The parallel L, C, combination is connected
to the plate circuit. Let V be the thermionic valve. G is grid. Cis cathod. F'is filament. P is plate.
The values of L, and C, will determine the frequency of the oscillatory circuit. The frequency of the

1
oscillatory circuitis 77—
y circuit is on \/ﬁ

Initially the bar is magnetised by passing direct current. = x[
The value of C, is adjusted untill the frequency of L, C, circuit -
is made equal to the natural frequency of longitudinal vibrations
of the-bar. If the frequency of the bar is more than 20 kHz it
emits Ultrasonics. . ~ :

2. Piezo electric generator : 'In this method converse
of Piezo electric effect is used. ' :

Piezo electric effect : Crystals like quartz, tourmaline, ‘
rochelle salt exhibit this effect. , e ! g A

If one pair of opposite faces of a ¢rystal are subjected to
pressure, opposite electric charges are developed on the other
pair of opposite faces. The polarities of the charge can be -
reversed when the crystal is subjected to tension. BT

The converse of Piezo electric effect is, if alternating
voltages are applied to one pair of faces, there is correspondirg ;
changes in the dimensions of the other pair of faces of the crystal

areproduced. . < :
The experimental arrangement is as shown in the diagram. @ is a thin slice of quartz crystal,

cut with its opposite faces perpendicular to the optic axis. The crystal is placed between the plates
A and B. The inductance L, capacitor C,are connected in parallel in the plate circuit. The variable
condenser capacity is adjusted untill the natural frequency of the crystal is made equal to the
frequency of the oscillatory circuit. By this method ultrasonit;s of frequency 500 kHz can be produced.
' . SHORT QUESTION ANSWERS

Q.2. What are ultrasonics ? What are their properties ?
Ans : Ultrasonics are the sound waves having frequency more than 20,000 Hz or 20 kHz

Properties: '
1. They travel with velocity of sound waves,
9. Their wave length is very small. Hence their energy is more.

3. They are less absorbed by the medium through which they pass.
4. They can propogate as a fine beam over longer distances. Hence used for communication
purpose in war field. . ‘
Q.3. What are the methods for the detection of ultrasonics?
Ans: 1. Kundt’s tube method, - 2. Sensitive flame method, 3. Piezo - electric detector and 4.

Thermal detector,

i m::--—..,_.____.J
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1. Kundt’s tube method : Lycopodium powder is sprinkled in the Kundt’s tube me;hod_
When ultrasonics are sent into the tube stationary ultrasonics are formed. Hence the powder cc.) lects
as small heaps at nodes. The distance between two nodes is half the wave length of ultrasonlcs_ :
2. Sensitive flaime method : When a narrow sensitive flame is moved ’?hrough the medium
where the ultrasonics are present, the flame will be steady at antinodes and flickers a't nodes.
3. Piezo electric detector : When one pair of opposite faces of a quartz C_rySta] 1s exposed to
the ultrasonics waves opposite charges are developed on the other pair of opposite faces. )
4. Thermal detector : When a platinum wire is moved through the medium whet“e ultrasonics
are present, at nodes the resistance of the wire changes with time. At antinodes the resistance of the
wire remains constant.
Q.4. Write short notes on Acoustic grating.

Ans: A quartz crystal ‘Q’is placed between two metal plates. These two plates are connected to
audio frequency oscillator. Due to the vibrations of the crystal ultrasonics are PTOduced: ’Ithey are
reflected by the reflector R. Hence stationary ultrasonics are formed. Hence density variations are
created. This arrangement is called acoustic grating. By this arrangement the wave length and
velocity of ultrasonics can be determined. :

When monochromatic light is passed through such grating, diffraction pattern is observed,
with central maxima and principal maxima on either side of it. ' ) :
Experimental Arrange-
ment : The - experimental - 8
arrangement is shown in fig. A § .
. — Collimator
collimated  beam from a

monochromatic light source passes § '<j:

B

H
y

] 11

b T

through the liquid acoustic grating T ‘21012
suffers diffraction. Thus the Quartz crystal—_| Q Diffraction
diffraction pattern can be viewed ' 1 : pattern

through a telescope. A number

of diffracted images on either side of the central image are observed. As the frequency of the
ultrasonic waves increases, the seperation of the diffraction lines increases. The angular separation
‘0’ between the direct image of the slit and the diffracted image of the nth order is measured. The
frequency of the oscillator which drives the crystal gives the frequency of the vibrating crystal. Thus

- the frequency of the ul_traéonig wave viskndwn. On substitu :
can calculate velocity of ultrasonic wave. . '

Q.5. Write a note on applications of ultrasonics.

 Ans:1. Depth of Sea: To measure depth of sea. If ¢ is the time interval between the

- transmission of the ultrasonic wave and receipt of the echo and v is the velocity of sound waves in

UXt
sea water, then depth of the seaa = 5

ting these in the above equation we

2. Direction Signaling : Since ultrasonic have high frequency they are used in directional
signalling. ‘ : , »

3. Detection of flaws in metals : Ultrasonic- waves can be used to detect flaws in metal. We
know that flaw in the metal produces a change in the medium due to which refl
waves takes place. : _

4. Detection of submarines, Iceberg and other objects in ocean : A sharp ultrasonic
beam is directed in various directions into the sea. The reflection of waves from any direction shows
the presence of some reflecting body in the sea. ,

5. Soldering and metal cutting : Ultrasonic waves can be used for drilling and cutting

processes in metals. These waves can also be used for soldering, for example, aluminium cannot be
soldered by normal methods.

ection of ultrasonic

6. Formation of alloys : The constituents of alloys, having widely different densities, can be

kept mixed uniformly by a beam of ultrasonic. Thus it is easy to get alloy of uniform
composition. :
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7. Ultrasonic mixing : A colloid solution or emulsion of two non - miscible Jiguids like oil
and water can be formed hy simultancously subjecting to ultrasonic radiations, How-n-days most
of the emulsion like polishes, paints, food products and pharma-ceutical preparations are
prepared by using ultrasonic mixing, o

8. Coagulation and erystallisation : The particles of o suapended liguid, by ultrasonics
can be brought quite close to cach other so that congulation may tale place. The ‘i"/ff";’”i”‘"'i"“ ”"’,’
is also affected by ultrasonics. The size of erystals, when molten metal is put to crystallisation, can
be made smaller and more uniform by the use of ultrasonics,

‘ 9. Ultrasonics in metallurgy : To irradiate molten metals which arcin the process of
cooling so as to refine the gain size and to prevent the formation of cores and to release trapped
gases, the ultrasonic waves are used. '

10. Destruction of lower life : The animals like rats, frogs, fishes, ete, can be killed or
injured by high intensity ultrasonics.
‘ 11. Treatment of neuralgic pain : The hody parts caffected due to neuralgic or eheumatic
pains on being exposed to ultrasonics get great relief from pain,
12. Detection of abnormal growth : Abnormal growth in the brain, certain tumours which
can not be detected by X-rays can be detected by ultrasonic waves,

Q.6. Explain about SONAR. .

Ans : Sonar (Sound navigation and ranging) is a technique that uses gound propagation (in
under water) to navigate, communicate with or detect objects on or under the surface of the water,
such as other vessels. ' ,

Mainly there are two types of sonar. They are passive sonar and active sonar, Passive sonar
is essentially listening for the sound made by vessels (objects). Active sonar is emitting pulses of
sounds and listening for echoes - Sonar has a wide spectrum of under water applications, including
communication between submarines and navigation of submarines. Mainly Sonar device uses the
ultrasonic waves to measure the distence, direction and speed of under water objects.

Sonar consists of a transmitter and a detector and is installed at the bottom of boats and
ships. The transmitter produces and transmits ultrasonic waves. These wave travel throu gh water
and after striking the object on the seabed,.get reflected back and are sensed by the detector. The
detector converts the ultrasonic waves into electrical signals which are approximately interpreted.
The distence of.the object that reflected the sound wave can be calculated by knowing the speed of
sound in water and the time travel between transmission and reception of the ultra sound.

Let the time travel between transmission and reception of ultra sound signal be 't and the
speed of sound through sea water be 2d =v « t. This method is called echo - ranging. Sonar technique
is used to determine the depth of sea, and to locate the underwater hills, valleys, submarine, Ice

bergs etc.

SOLVED PROBLEMS

7. A n'mgnetostriétion oscillator has frequency 20 kHz. If it produces sound wave of
velocity 6.2 x 10° m/s, find the length of ferrite rod.

v
Solution: V= 2 ?
. 6.2x10%
. 3 _bexU
L 20x10 2l

3 » ‘
. l=ig—x—1i—3=%—g=5% =155x102=0.155m
2x20x10

8. Calculate the frequency' of fundamental note emitted by a piezo electrtic crystal. -

Use the following data.

Solution :
Y=8x 10 N/m* ; Vibrating length = 3mm
e=25x10°kg./m’ :

1 [¥

"EoNP
Y =8x 10" N/m?

S
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p =25x10%kg. m3
I =8mm=8x10%m

n= i 8x 10" =0.943 M H.
" 2xax10° \2sx10° O “

9. A quartz crystal thickness 0.001 metre is vibrating at resonance. Calculate thf_
fundamental frequency. Given Y for quartz = 7.9 x 10" newton/m? and p for quartz =
2650 kg/m3

Solution: We know v= VY/p

_— o 7.9x10% ;
~ Substituting the given values, we get v= 265 )= 5461 m/sec.

For the fundamental mode of vibration the thickness should be equal to 2/2. Hence
A=2t=2x0.001 =0.002 metre \

Now v=vi or
T
A
5461
=——=273 4
V= 000z ~4780x10" Hz

10. A piezo electric crystal has-a thickness 0.002 m. If the velocity of sound wave
in crystal is 5750m/s, calcu]ate the fundamental frequency of crystal.

Solution: v=

v 5750 5750
2%0002 0004
=1.4875x 10° Hz = 1.4375 MHz

11. Calculate the capacitance to produce ultrosonic waves oin‘ Hz with an iﬁductance
of I henry. : ’ !

Solution : The frequency of LC circuit is given by |
1 ( 1 )
v=—_ | —
2n\\LC

1
S =
C=TL 4x(314) (10°) x1 =0.025% 10" Fard = 0.025 .
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PHYSICS PRACTICALS
MECHANICS, WAVES AND OSCILLATIONS

L. YOUNG'S MODULUS OF THE MATERIAL OF BAR BY UNIFORM BENDING
Experiment No

Date

PHY SIS VA )

Aim : To determine the Young's modulus of the material of a given beatn by uniform bending
method.

Apparatus : A metal beam of iron or steel having a uniform rectangular crosy section, two knife
edge supporters, weight hangers, metre scale, travelling microscope, vernier calipers, screw gatge,
Formula :

.\

In the uniform bending method, the Young's modulus of a beam of rectangular crons section s

given by
pod o
3 gal’ i \

M ; B s — —
Y= (TJ dynes/cm? (or) N/m?. | %L/’~’“ ey J |

Here, the arrangement is as shown in Fig-1 and ) ’,/ :
g = acceleration due to gravity (cm/s?) i:’;’ i

1 = length of the beam between the two knife edge
supports = CD (as in Fig-1 (cm)

a = distance on each side, between the knife edge support I iy
and place from where weight hanger weight hanger is hung (cm) .
EC=FD Fig 1

b = breadth of the beam (cm)

d = thickness of the beam (cm)

M = mass hung from each weight hanger (gm)

e = elevation of the mid point due to a mass M (on either side) (cm)

Description : _

The experifnental'arrangement will be as shown in Fig-1. Here AB is a uniform rcctangulzfr beam
of length 100 cm made of iron or steel. C and D are two knife edge supports tha} can be placgd in fixed
positions at a distance (1) a part. The beam is placed on these two knife cdgc’s in a symmetric mannr.
That is the length AC and length DB will be exactly the same. A pin is fixed with wax at the midpoint N
of the beam. This will be midpoint of the length 'I' of the beam bet'wccn C an<'l D due to the symmetric
arrangement. Through the eye piece of travelling microscope the pin appears inverted.

Near the two ends A and B, at equal distance on either side from A and B, at E two grooves are
marked with a file and the weight travelling hangers are placed on these grooves. By symmetry AE = FB
and EC = DF. Weights can be added to these weight har}gers. The E and F should be l?ctwccn A'and C and
D and B and not between C and D. By this symmetric arrangements, the beam will be subjected to a
uniform bending.

Theory of Experiment , | ‘ ‘ |

Let the weight hangers (of equal weights) alone arc suspended from E and F and the horizontal
cross wire in the eye piece of travelling microscope is made to COIn(‘:ldC’Wlth the tip of the (image of the
) pin. Let the reading on the vertical scale of travelling microscope is (Z,). Let the mass of each weight
hanger is M, ' ‘ |

Now let us add additional masses each of value M on either WClgf!t hangcr. Lgt thc-rczndnlng of the
travelling microscope be now (z). That is, duc to a mass M, the clevation of the pin (mid pf)mt of the
beam) e = (Z — Z,). Now, the Youngs modulus of the material of the beam can be calculated from

3ga12 (—M—) dynes/cm?)
Y= Le (dy

T " o s LT sl Ty W HAR od v SRR 1 - o " " v
e TSN i T T RO VARLC T O e e P e T TR A
Tt s ———
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Experimental Procedure : o,

P First of all the arrangements are made as shown Fig-1. The length | of the bcu'm hclg/ccn((', ,‘m;l[,«;
is adjusted to be 60 cm. The weight hangers are suspended at E and F at a distance of 2 ul); ff:"::icln-:!“:”
The pin is fixed-vertically with wax at the mid point N of AB = | of the hc:xm. The tmw."l?l;‘, ’w'm 1})) ! lpu
is brought before N and is focussed such that the horizontal cross wire coincides lanﬁcmf“' v '( M = ap
of the pin. The reading on the vertical scale is noted as (7,). Let each weight hanger has a m“; £ .

Now a mass (additional) M of 500 gm is added on cither weight hanger and the rcudm.g ;) tm:/JL Il;,_{
microscope is noted as z. Now ¢ = 7z — 7, is the clevation of the midpoint for a mass M ( mj ‘(-ill:u.'}ﬁll_ (;)-'hn
the case of wooden beam, the mass M should be only 50 gm].Next, the masses are increasec LAIL 1‘ ;n’;,-} y
500 gm (50 gm for wooden beam) and the corresponding reading z is noted and ¢ 1s cal(,u"m:(b. 5()1;,
process is continued upto a mass of 3000gm. Now, the weights are gradually decreased, cach'tlmg y ‘ ()
gm and the reading (with mass decreased) are taken once again and entered into the tabular form-1A and
form Table-1 into Table-2B, ' P

Now, the distance CD between the knife.edges is measured on the beam with a mcltrc ;qc.alc zgs'l'.

CD =1 cm Distance of each knife edge from the corresponding knife edge - that is EC "-'f' D!‘ 15
carefully measured with metre scale as 'a’. EC = DF = a cm. With a vernier calipers, the breadth 'b' ol. the
beam is measured at four different places and readings are entered in Table-3D. The thickndss_ d' of the
beam is measured with a screw gauge at six different places. Readings are entered in Table-4E.

e i M
Average value of ( T) is found from Table-2.

M
The value of (—E‘J can be found from a graph drawn between M and e also.

Substituting the values in F and finally in Equation-1 we calculated Y,

We can change the length | - distance between the knife edges and determine y - two or three times
as we wish.

Observations : Readings are noted first in table - | and then transferred to table-2.
A Readings on the vertical scale of the travelling microscope
1 Main scale division S = 0.05 cm. Total number of vernier divisions n = 50
AS’ .
Least count of vernier L.C = P 0.05 cm = 0.001 cm.
Table - 1
Mass added | Main scale Vernier | Vernier measurement
(M) (gm) acm, coincidencg b=nxlc=
'n' nx 0.00] cm

Total reading
(ath) cm =2

Weight hanger
only M,
500 gm

1000 gm

1500 gm

2000 gm

2500 gm

3000 gm

3000 gm

2500 gm

2000 gm

1500 gm

1000 gm
500 gm

Above M - Z values are transferred into Table-2.
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B) Readings of M and e.
Table - 2

PHYSICS (E.M.)

Mass added Readings on the vertical scale of
M gm Microscope(3)

Elevation of N for M
travellinge=2-7, | ¢

Load Load Mean (3)

increasing decreasing
Weight hanger ‘ ’
only M Z

500 gm
1000 gm
1500 gm
2000 gm
2500 gm
3000 gm

: . M
Average value of (—e') = gm/cm

C)M —e graph:
M onx axis e : Scale :
e.ony axis e : Scale :

M
€ GJEn ot R
N
value of % from graph ::~1
D) Breadth (b) of the beam Wwith 4 vernier calii)ers - X :
1 Main scale divisions =0.1 cm " Load o '
Total humber of vernier divisions n = 10
: . S 0.1cm :
Least count of vernier LC. = 0 0.01 cm
_ ~ Table-3 .
S.No. Main scale | Vernier Vernier Total reading
reading | coincidence | measurement (atb) cm
(a) cm R ) | ®)=nxle= | = Breadth(b)
1 ‘n x 0.001 cm
(1)
2)
€)
(4) -
Average breadth of the beam b = cm

E) Thickness (d) of the beam with a screw guage
Pitch of the screw = 0.lcm
Number of Head scale divisions = 100

Least count of screw gauge

Pitch of the screw = 0.Icm =0.00Icm

No.of Head scaledivisions In
‘ . Head scale divisions.

Zero error correction =

RPN Y Y W
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.LII.N(;. Iinch seale Hend seule

rending measarement

nem Hend seale Reading hem = n oo le

0o 0001 cm

7 Observed [Corrected (n)

(2)
(3)
(4)
(5)
(6)

Average thickness of the beam (d) = em

/]

F) Calculations - Data : (1) Average value of ( ] from table =

[
Distance between knife edpes | = cm

Distance on each side from knife edge to

Weight hanger ; n= cm
Breadth of the beam b= cm
Acceleration due to gravity g = cny/g?
Young's modulus of the material of the beam
y o 3 gu_/i (MJ
o 2bat e
= dynes/em®> 7 i (2)
= Nm* e -~(3)

TSI 1)
Topal reading
Giih) e
Tickness (d)
of the heam

pm/cm

The values of Y in dynes/cm? is to be divided by 10 (o get the numerical values of Y in N/ny,

M
(2) — from graph =

}r

= .;;;'a//‘ (M—— Srom gm/)//) =
-

p ~ dynes/cm?
= e N/m?

'

Precautions :The following precautions are to be carefully observed during the experiment,

1. The beam should be placed symmetrically on the knife edge. That is AC

also, where N is the mid point of AB.
2. The weights are to be suspended symmetrically.
That is AE = BF and EC = FD also,

Unless the conditions (1) and (2) are perfectly satisfied, we do not get

beam.

3. The adjustment screw on the vertical scale of the travelling microscope should be

BD and CN = ND

a uniform bending of the

always rotated

in the same direction. Otherwise there will arise 'Back lash error', The adjustment to get all the

readings by moving the screw only in one direction should be attended 1o in the

itself.

beginning

The weights should be added in the weight langer in a regular fashion and in an orderly manner
and in a smooth way. While adding or removing the weights, care should be taken to see that

the symmetric arrangements are not disturbed.
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2. YOUNG'S MODULUS OF THE MATERIAL OF BAR BY NON-UNIFORM

BENDING -
Experiment No
Date , .
Aim To determine the Young's modulus of the material of a given beam by non-uniform bending

(double cantilever) method.
Apparatus A metal beam of iron or steel of uniform rectangular cross section, two knife edge supporters,
pin, one weight hanger, metre scale, travelling microscope, vernier calipers, screw gauge.
Formula  In the uniform bending method (double cantilever) the Young's modulus of a beam of

rectangular cross section is given by

3gl> (M
Ibd® \ ¢ ) dynes/em?  ——(1)
(or N/m?) 1(a)

Here, the arrangement is as shown in Fig-1 and
g = acceleration due to gravity (cm/s?)
[ = length of the beam between the two knife

edge supports (cm) [before adding

weights] = AB & s
b = breadth of the beam (cm) S s —
d = thickness of the beam (cm) Fig - 1

M = mass suspended at the middle of the beam (gm)

e = Depression of the mid point. Due to the mass M suspended at the middle (cm)
Description o - , :

The experimental arrangement will be as shown in Fig-1. PQ is a metal beam of iron steel of
uniform rectangular cross section This beam is supported on two knife edge supporters Aand B in a
symmetric manner. That is PA = QB. At the mid point of AB - that is, at the mid point N of PQ, we
suspend a weight hanger from which weights can be hung. Let the mass of the weight hanger alone is M,,.
Due to this mass suspended, the mid point N gets depressed. The two half portions of the beam act as two
cantilevers and hence the arrangement is called a double cantilever. A pin is fixed vertically at N (to the
weight hanger itself) with wax. The horizontal cross wire in the travelling microscope is adjusted to

coincide tangentially with the tip of the pin and the reading on the vertical scale is noted down. It should

be kept in mini here that, the pin appears inverted through the eye piece. \

Theory of Experiment : . ; '
If M is the mass suspended at the mid point N of the beam, the weight W = Mg. But here we have

2 double cantilever and hence the weight for each cantilever will be W = —f‘ and length of each cantilever

. Mg R
is L In the case of a beam of rectangular cross section with Zg load for a length 5 we have
p .

; ; | ‘
Y= & (MJ Here ¢ is the depression due to a load Mg.

4bd’ \ € | . ‘
Experimental Procedure

The arrangements are setup as shown Fig-1. The beam is so adjusted to have PA = QB. Now, the

weight hanger alone is suspended from N. .Let the mass of \{veight hanger %s M,. The hori_zontal Cross wire

in the eye piece of travelling microscope 18 adjusted to coincide tangentially with the tip of the pin and

the reading on the vertical scale is noted as Z, The value of M, need'not be known to us. _
Next an additional 500gm mass is added to the weight hanger and the corresponding reading (z) is

noted. The process continued in steps of adding 500 gm. [In the case of a wooden beam the masses

should be 50gm and final mass 300gm only] Next, the masses are reduced gradually each time by 500gm
pe readings (z) are noted: The readings are first entered into Table-1. (A) From

and again the microsco X
M and Z are entered into Table-2 (B) The length of the beam 'l' between A and B

this table, the values of . .
is measured with a metre scale. The breadth (b) of the beam is measured at four different places with a
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PHYSICS (EM,)

: . 1 of the beam is measured at six
vernier calipers. Reading are entered in Table-3. (D) The thickness d' of the beam 15 measured at six ]
different places with a screw gauge. Readings are entered in Table-4 (F).

M
Average value of - is found from Table-2.

M
. nsl] O th 3T
A graph is dawn with 'M' on x axis and correspondly '¢' on y axis and ( 5 J is found from the graph

* also. Data is entered in order as in F.

M ' '
Using these value of —  We can immediately calculate y. he beam between
The experiment may be repeated 2 or 3 times by changing the length / = AB of the

A and B knife edges.

Observations : First readings are noted in table - 1 and then transferred to table-2.

A) Readings on the vertical scale of the travelling microscope

1 Main scale division S = 0.05 cm, Total number of vernier divisions N = 50

S 0.05 cm

Least count of vernier l.c = Y 50

001 cm.

Table - 1

Mass added Main scale Vernier
(M) (gm) acm. coincidence]

n

Vernier
measurement
b= nx Lc=

|10 x 0.001 cm

Total reading
(atb)ycm=1z

Weight hanger
only M,

Z =

0

500 gm
1000 gm
1500 gm
2000 gm
2500 gm -
3000 gm
3000 gm
2500 gm
2000 gm
1500 gm
1000 gm
500 gm

Above M - Z values are transferred into Table-2.
B) Readings of M and e,

‘Table - 2

M gm ~ Microscope(3)

Mass added Readings on the vertical scale of

Elevation of N for
travellinge =7 _ Z,

Load Load
increasing | decreasing

Mean (3)

-

Weight hanger
only M, '

Z

0

500 gm
1000 gm

1500 gm
2000 gm
2500 gm
3000 gm
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) M
Average vulucuf( J "

PHYOICS (.M.

. fm/em
C)M —e¢ graph :
M on x axis ¢ : Scalc ;
cony axis ¢: Scale : of 4
M r,. %
M |
) A |
M ]
From graph(Tj - O Load M
D) Breadth (b) of the beam with a vernier calipers Fig - 2
1 Main scale division S = 0,1 ¢cm
Total number of vernier divisions n = 10
Least count of vernier L.C. = 2 ()'Il(jm = 0.0 cm
n
Table - 3
‘S.No. |  Mainscale [ Vernier Vernier Total reading
reading | coincidence | measurement (atb) cm
(a) cm n' (b) = ny Lc= = Breadth(b)
n x 0.00] cm
1)
(2)
3)
4)

Average breadth of the beam b = cm
E) Thickness (d) of the beam with a screw guage

Pitch of the screw = 0.1 cm

Number of Head scale divisions = 100

Least count of screw gauge

Pitch of the screw
No.of Head scaledivisions In

- 0.lcm

= 0.001cm

Head scale divisions.

Zero error correction =

S1.No. Pinch scale Head scale Total reading
reading Head scale Reading measurement | (a+b) cm
acm bem=n x lc| Tickness (d)
. n x0.001 cm| of the beam
Observed | Corrected (n)
(1)
2)
3)
4)
(5)
(6)

Average thickness of the beam (d)= cm

F) Calculations - Data

, MY - '
(1) Average value of (TJ from tab]c -2= gm/cm
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Distance between knife edgpes J = o
Breadth of the beam h oI
Thickness of the beam  d - em/s’
Acceleration due to pravity g cm/y’

Young's modulus of the material of the beam

L

3 pal’ {M‘ Iynes
y =284 (M| dynes y,
2 hd’ ) 7 PRR—Y)

cm’”

Nm> s (%)
" » . ' ) ‘¢ Y7 ) & ') ? “r‘;"’
Ihe values of Y in dynes/en?” is to be divided by 10 (o pet the numerical values of {in Nt

M
(2) =~ from graph -

3 gal (Mo h. )
YW Jrom grap J = e (lyneg/cm?

= ——— N/m?

Precautions :The following precautions are o be carefully observed during the experiment.

I The beam should be placed symmetrically on the knife edges. That is PA = OB,

2. Weigh hanger should be suspended exactly at the mid point N of the beam.

3. The adjustment screw on the vertical scale of the travelling microscope should be 2lways rotated
in the same direction, Otherwise there will arise 'Back lash error’. The adjustment to get all the
readings by moving the screw only in one direction should be attended to in the beginning
itself,

4. The weights should be added in the weight langer in a regular fashion and in an orderly manner
and in a smooth way. While adding or removing the weights, care should be taken to see that
the symmetric arrangements are not disturbed. ‘

Viva — Voce
What is a beam? What are the différent types of beams?
What is bending moment? ’
When is the bending said to be uniform and when is it said to be non-uniform?
When is the reason for calling the non-uniform bending as double cantilever 2 What are the two
cantilevers formed in this experiment?
5. In the case of non-uniform bending experiment, what are the points on the beam that are
symmetrically arranged with respect to the C.G. of the beam?

6. In the.case of uniform bending experiment, what are the points on the beam that are symmetrically
. arranged with respect to the C.G. of the beam? :
7. In the case of uniform bending, which physical quantity to be measured more accurately and why?
8. In the case of non-uniform bending, which physical quantity is to be measured more accurately
and why? '
9. What is 'backlash error' with a travelling microscope? How can it be eliminated?
10. While using the Vertical cross wire in the eye piece, on which scale you should observe readings?
11. What is neutral axis of a beam?
12. What is meant by cleasticity? What is plasticity?
13. What is Hooke's law?
14. How many kinds of elasticities are there? What is the relation between them?
15. Define Young's modulus?
16. When is a beem called a cantilever?

e S

P
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Viva - Voce Answers

1. A;)cam.ls sl.ruc'tl‘u'al member that is designed to resist forces acting transverse to its axis, Usually
a beam is of Eunlorm cross section and of length large in comparison to its breadth and thickness.
Beams are of lhrcg types (1) Simple supported beam, (2) Cantilever beam and (3) A beam with
over hang (Protrusion).

2 T'hc moment of llluc bending (clastic couple) couple is called the bending moment. It will be ina
direction perpendicular to the plane of paper. '

3. If the value of R, the radius of curvature is the same for all parts of neutral axis of the beam, the
bending is said to be uniform, If the value of R is different for different parts of the neutral axis of
the beam, then the bending is said to be non-uniform.

4. Here, the beam is supported on two knife edges at two points, Each half of the beam, between one
support (on knife edge) and the point where the beam is loaded (mid point) behaves like a cantilever.
As the two halves of the beam acting as two cantilevers, the arrangement is referred to as Double
Cantilever.

AO - one cantilever, OB - second cantilever.

5. The two points at which the beam rests on the knife edges should be symmetric about the centre of
gravity (C.G.) of the beam. That is, on cither side of C.G., the points of support should be at cqual
distances from C.G. '

6. Here, the two points at which the beam is supported on the knife edges, and the two points where
the beam is loaded should by symmetric about the centre of Gravity-that is they should be (each
pair) at equal distances from C.G. : . , ‘ ' ‘

7. The thickness.'d"of the beam should be more accurately determined as it occurs in the third power
(d) in the formula. : . : '

8. The thickness 'd' of the beam as well as the distance (I) between the points of support on knife
edges should be more accurately determined as both of them occur in third powers (& and P) in the
formula. / ‘ '

9. While taking readings with a'travelling microscope - either on horizontal scale or vertical scale,

we have to rotate the tangential screw (T.S.) for finer adjustments. During the experiment, if we ‘
rotate the screw once forward, then backward and again in forward direction an error called backlash 1
|

error arises in readings.
10. While using horizontal cross wire - we take readings on vertical scale.
While using Vertical cross wire - we take readings on horiiontal scale.
11. When a beam is subjected to bending, there will be a portion of the beam which is neither elongated

or compressed. This portion is called the neutral surface. The line along which the neutral surface
intersects the plane of bending is called neutral axis.

12. The property of a body by virtue of which its deformation is resisted and the body regains its
original size and shape after the deformation force is removed is called clasticity.

If the body cannot regain its original shape and size when the deformation force is removed, the
~ property is called plasticity.
' . L. Slress

13. Within the proportionality limit, ~==

proportionality is called the coefficient of clasticity.
14. Coefficients of elasticity are of 3 types (1) Young's Moduluss Y, (2) Bulk Modulus k and (3)
: ' , . _ Ykn
Rigidity Modulus 77 . The relation between them is = m

= a constant. This is calle Hooke's Law. The constant of

Stress ' |
———————— .

15. Youngs Modulus ¢ Linear strain

*16. A cantilever beam is a beam that is built in or rigidly fixed at one and free at the other end. Before
addings weights at the free end, the beam will be horizontal. But when weights are added at the

free end it gets bent.

Bl A BOMINE S s ST A LY
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3. SURFACE TENSION OF A LIQUID BY CAPILLARY RISE METHOI

Expcrimént‘ No

Date
. T i, ise method. ~
i ace tensi a gi uid by capillary risc me
Aim To determine the surface tension of a given liq y caj Bber ban ds

i i cavelli icroscope, ru
Apparatus A uniform capillary glass tube of length about 20 cm, travelling microscop

c
retort stand, beaker, G II—' E

By the method of capillary rise, the surface tension (T) of a liquid is given by

(]1 + £)r dg
T= 32 dynes/cm
Here, h= the height to which the liquid rises up in the capillary tube (cm)
r = radius of the capillary tube (cm) »
d = density of the liquid (gm/cm?)
g = acceleration due to gravity (cm/s?)

Description ' . : . :
As shown in Fig-1, A uniform capillary tube AB is placed vertically imimersed to a certain height

in a beaker B filled with given liquid, by means of retort stand R. Due to capillary action, the liquid rises
to a certain height 'h' inside the capillary tube. (liquids like water rise up, where as mercury goes down in
the capillary tube). The rise 'h' can be accurately determined with a travelling microscope. The horizontal
cross wire in the'eye piece is adjusted to coincide tangentially with the lower (concave) meniscus of

' o IC
water inside the capillary tube. The reading on the vertical scale is noted as R,. The thin wire G Fl E

Formula

bent twice at right angles is attached to the capillary tube, with rubber bands such that the lower end of
EF - that is F just touches the surface of liquid (water) in the beaker. After removing the beaker without
distrubing the wire, the horizontal cross wire in the eye piece is adjusted to coincide tangentially with the
tip F of the wire. The reading on the vertical scale is noted as R,. The difference between these two
readings (R,—R,) gives the rise 'h'".

Rtl R, !

! o
o) Tor

I
i I
Fig -1
Theory of Experiment

The angle of contact between glass and water is less than 90° and such liquids rise up in capillary
tubes. The height 'h' to which the liquid rises, the radius 't' of the capillary tube, density of the liquid d"

are related to surface tension, according theory, as

(h'+ gJ rdg
I=-—t
2

In our experiment, we should carefully measure the height h and radius r very a_ccurétely. For this,

we make use of a travelling microscope,

Experimental Procedure _ |
First of all the capillary tube is throughly cleaned with acidified potassium dichromate solution.

This is to ensure that there are no grease and dust inside the capillary tube. Then the tube is cleaned with
distilled water and dried. Next the glass beaker filled with water is placed at a certain height. The capillary
tube is vertically dipped into the liquid inside the beaker and is rigidly fixed in position by means of a
retort stand. The capillary's lower and should not touch the bottom of the beaker and should be slightly

,_ |
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above. F‘.ml lmc capillary is completely dipped vertically into the liquid and then raised up. This ensures
that the liquid wets the tube, |

Next, the twice bent thin wire is attached to the capillary tube with the help of rubber bands, such
that the end F touches the surface of liquid in the beaker (water). - Yy

Next, the horizontal cross wire in the eye picce of the travelling microscope is adjusted to coincide
tangentially with the upper surface (lower meniscus) of liquid raised inside the capillary tube, the reading
on the vertical scale is noted as R | |
Next, the beaker is gentaly removed without disturbing the thin wire and now the horizontal errors
wire is adjusted to coineide tangentially with the tip of the bent wire (F). Reading on the vertical scale is
noted as R, (R =R,) gives the height 'h. :

Next, the capillary tube is taken out, cleaned and dried once again and then its radius ' is determined
with the travelling microscope. | '
(B) Determination of the inner radius of the capillary tube with a travelling microscope

As shown in Fig-1(a) let us coincide the vertical cross wires as tangents to the inner circle of cross
section and let the respective readings on the horizontal scale be x, and x, respectively. The diameter of
the inner circle will be d = x, - x,. Similarly, as shown Fig-1(b), if the readings on the vertical scale
corresponding to the coincidences of horizontal cross wires as tangents are y, and y, respectively, then d
=Y, Y .

s : . . d
From these readings we can determine the radius » = 7

The readings are arranged in a tabular from.
Observations '
(A) Determination of h

1 main scale division S = 0.05 cm

No. of divisions on the vernier n = 50

S 005 cm

Least count /.c. = " 7 0.001 cm |
S.No. Main scale - | Vernier | Vernier - Total reading
reading coincidence | measurement -(a+b) cm
(a)em (n) (b)=nxlc="
| nx 0.00l cm
Reading of ‘ R =
upper surface
of liquid risen
in capillary R,
Reading of the ) : : R=
tip of F R, = )
(B) Determination of Inner radius (r) of capillary tube .
Readings on the horizontal scale of the microscope &g }R‘
Least count of the vernier l.c. = 0.001 cm : :
S.No. Main scalel Vernier Vernier Total reading
reading | coincidence|measurement (atb) cm
- (a)cm (n) (b) =nxl.c=
' n x 0.001 cm
1 Xy = : l :
- Fig-2
2 X, = S

I

o |

reading

e — AN
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“.No, Main scale| Vernier Vernier Total reading /-\
reading  poincidencejmeasurement (atb) cm R,

(a) em (n) (b) = nx Le=
nx 0,001 cm . - R,
| Y, * irine
Fig - 4
2, Yy = v
[nner diameter of the capillary tube d =y, —~y, = cm
. d r
réading r r=% =oem e (i1)
. "I ' l'_\
Average radius = ok o cm
(C) Height to which the liquid rised inside the capillary.  h= cm
Inner radius of the capillary tube r= cm
Density of liquid , d= gm/cm’
Acceleration due to gravity : g= cm/s*
* Surface Tension of the liquid
Result , . .
Surface tension of the given liquid by capillary rise method T = .......... dynes/cm - ---—--- I
Precautions .

The following precautions should be carefully observed during the experiment.
1. Initially the capillary should be cleaned to remove any grease, oil or dust.
2. The bore of the capillary should be uniform through out. -
3. The capillary tube should be always-vertical.
Viva - Voce
In determining the surface tension of a liquid which method is. the easiest? and
How does the surface tension of a liquid change with temiaeraturé? ; A
Where is the property of surface tension exhibited more - at the surface or inside the liquid ?
Mention certain uses and examples’ of surface tension? i
When a capillary is dipped into a liquid, do all the liquids rise up in the capillary? On what factor
does the behaviour of a liquid depend upon? ‘ '
6. When a glass capillary tube is immersed in mercury, what will happen? And why?

7. What is the behaviour of (a) detergents and (b) water proofing agents? What is the reason for the
respective behaviours? '

8. ‘Which method is more accurate in your opinion and why?
Viva - Voce Answers

R

Surface tension by method of drops is the casiest method.

As temperature increases, the surface tension of liquids gets decreased,

As expressed in the name itself, the properly of surface tension of exhibited at the surface only.
Artificial dentures get attached in the mouth due to surface tension.

B Lo =

It is due to capillarity, a consequences of surface tension, that the following phenomena happen :
(a) The rise of oil through a wick. ‘ :
(b) Rise of solutions through the roots to the plant.

(c) Blotting paper absorbing ink.
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Experiment No

Date
Aim

Apparatus  An aspirator bottle, retort stand and travelling microscope or mercury, watch glass and a

Formula  Coefficient of viscosity 7 of a liquid through Poiseille's method is given-by.

. Not all the liquids rise up through a capillary. Mercury gets depressed in a glass capillary tube.

Mercury gets depressed in a glass capillary. This is because, the angle of contact between mercury
and glass is (~135%) greater than 90°.

. Detergents make water get attached and imbued by clothes by reducing the angle of contact.

The more accurate method is the capillaryrise method. It has a sound theoretical back ground and
measurements can be taken accurately.

4. VISCOSITY OF LIQUID BY THE FLOW METHOD (POISEUILLE’S METHOD)

Here, p = The pressure difference betwéen the two ends of the capillary tube of length '/ ' (dynes/

cm?) and p=hdg where : :
h = the height of the water level in the glass vessel from the axis of the -capillary tube. (cm)

(average height) If h, is the height before starting the experiment and b, is the height at the end of the
experiment, then : : :

t = inner radius of the capillary tube (cm)
t = time through which the liquid of lows through the capillary tube (time through which water is

collected in the beaker) (seconds)
V = the volume of the liquid flown t

the liquid collected in the beaker (cn’)
L = length of the capillary tube (cm)
(A) Determination of inner ra

(B) Determination of the inner radius of the capillary tube with a travelling microscope.

(d) Round shape of (spherical shape of) rain drops.
(e) Lead pellets having spherical shape.

{f th‘e apglc of f:ontact bgtween the liquid and the material of the capillary tube is less than 90°, the
_1qu1d rises up in the capillary, but if the angle of contact is more than 90%, the liquid gets depressed
in the capillary.

To determine the coefficients of viscosity of different liquids by studying the flow of liquids
through capillaries.

common balance, sensitive stop clock, measuring jar, metre scale, pinch cock clip, beaker,
rubber tube, water and other liquids having low viscosity. : '

_ 7zpr4t
8V L

n dynes/square cm/unit veiocity gradient or Poise - ()

_ hth

B 12

d = density of the liquid (gn/cm’)

g = acceleration due to gravity (cm/s?)

h

hrough the capillary tube for a time (t) - that is the volume of

dius of the capillary tube by mercury pellet method

@)

fromm = (zr’l)p-

radius

r = m cm : AR eEEE CTRARE TR T Teesens (3)
anp

gth of the mercury pellet drawn into the capillary tube (cm)

Here, 1 = len
m = mass of this mercury pellet (gm)

p = density of mercury (gm/cm’)

o T DR TR T T S s e ermsas s
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As shown in fig-1(a) let us coincide the vertical cross wires as tangents to the inner circlle of cross
section and let the respective radings on the horizontal scale be x, and x, respc.ectively. The dle}meter of
the inner circle will be d = x, — x,. Similarly, as shown in Fig-(1)b, if the readings on the veftxcal scale
corresponding to the coincidences of horizontal cross wires as tangents are y, and y, respectively, then

: : ; d
From these readings we can determine the radius » = 5

H,
\ Xy X3
V;

’ a0 Fig 1(b)
Description Fig 1(a) :
The arrangement of the apparatus consists of an

aspirator bottle of about two litres capacity provided
with an opening at the side near the bottom. The opening

is closed by one-hold rubber stopper through which 4)0
passes a short glass tube. The capillary tube is connected ey

to the outer end of the glass tube with a short rubber
tubing which is provided with a pinch-cock. When the
aspirator is filled with water, it flows out through the
capillary tube which is kept in a horizontal position.
When the collection of water is over, the flow of water -
can be stopped by closing the pinch-cock. Fig 2

Ifh, and h, represent the heights of water level in the aspirator bottle above the axis of the capillary
tube before and after the collection of water, the mean pressure exerted is given by P = hdg where h is the

- |

hy+h - ‘ :
average height ( = P 2) d the density of water and g the acceleration due to gravity.

Theory of Experiment o , , _

If a liquid having a coefficient of viscosity ( flows through a capillary tube of inner radius 'r' and

length 'I' under a pressure difference 'p' for a time 't' then poisemble showed that the volume of liquid

flown through time 't' is given by p .
Tpr 4t

V= Sl From this, we can determine? by measuring V.

Experimental Procedure _ )

The capillary tube is-cleaned well first with acidified potassium dichromate solution and then with
tap water. It is then fixed to the upper tube and clamped with its axis horozontal. A short length of fine
thread is tied to tube at free end of the capillary tube so that the water coming out of the capillary tube

trickless down along the thread in drops. -

A clean and dry breaker is taken and is placed under the free end the capillary tube. The height b,
cm of water level in the aspirator bottle above the axis of the capillary tube is measured with a metre
scale. By opening pinch-cock completely water is allowed to flow through the capillary tube into the
beaker for a sufficient interval of time 1 seconds (about 15 minutes). The pinch-cock is closed and the
height h, of the water level in the aspirator bottle above the axis of the tube is measured. The beaker is
~ removed. The volume of water collected is given by a measuring jar in which the water collected is found
and its volume is determined. } _ 3

To determine the internal radius r of the capillary tube, the tube is almost completely filled with
mercury and the length 1 of the mercury and the length 1 of the mercury thread is measured with a scale ‘
The mercury is then transferred into a weighed watch glass and its weight is determined correct to 2 .;;‘
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Mikram. Fro . - . o B _ ‘ . . SICS (E.M.
‘}““"1“““1 : rom this, the mass m of mercury is found. The radius r of the capillary tube is then calculate
from the relation g = 21 p where p s tho density of mercury.

| s
\ v B e m
I'hat is "' = \/w___

7r/p

The re N ) . ala o~ . . . . . .
Che radius 't' may also be found with a travelling microscope as explined already in (B) of Formula.
Finally the length 1 of the capillary tube is measured with a scale.,
The coeflicient of viscosity of water is then caleulated using the formula.

)'."

1= SV dynes/sq.cm./unit vel. gradient,

‘hxactly the same procedure is followed with other liquids and the corresponding coefficient of
viscosity 1, is calculated in each case. :
Observations

(A) Inner radius of (r) of the capillary tube by mercury pellet method

Length of mercury pellel /= cm
Density of mercury p = gm/cm’
Mass of empty watch glass W, = gm

Mass of watch glass + mercury W, =gm

Mass of mercury pellet m = (W,~-W,) gm

Table — 1 for measuring W, and W, - Simple Balance
S.L ’ - Mass in gm |
No. | Contents in the pans Turning points | Average Resting point
Left Pan | Right Pan | Left | Right Left - | Right :
(object) | (weighty )| @ @ | (b |RP= [f’ j )
I 0 0 . ZRDP.=

m
Internal radius of capillary " = \’;T;; = (cm)

(B) Inner radius or capillary tube bya travelling microscope
Readings on the horizontal scale of t.hc microscope
rl.c. = 0.001 cm

Least count of the vernie

SI.No| Main scale Vernier Vernier  |Total reading
reading coincidenc¢ measure | = (atb) em
(a) cm (n) bem=n x lc .
n x 0.001 cm ) '|“
‘ e
: &y e Fig 3
2. | X, =
Inner diameter of the capillary tubc d=x,-x,= cm
d .
reading e cm (1)
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Readings on the vertical scale
S1.No| Main scale Vernier Vernier Total reading
reading coincidencel measure: = (atb) cm
(a) cm (n) bem=n x lc

n x 0.001 cm ‘ .
T ’ . S /_\

L
I \

2. Y, = . U .
Inner diameter of the capillary tubed=y —~y,= cm

d : '
Radius r =5=em (i) Fig : 4

<

1+

Average radius = cm

Observations Now the data is entered as follows.

SLNo. | Measured quantity ' | Value

L. Length of the capillary tube 1= cm

2. Time of flow of water t= enly s

3.  Inner radius of capillary tube I S N P cm

4. - Acceleration due to gravity | g=980 cm/s?

5. Initial height of water column = = | h =cm |

6. Final height of water column | h=..cm

7. .| Average height of water column h= hl—zhz— v e

8. Pressure difference between the two p =hdg = .... dynes/cm?

ends of the capillary tube (density of
water d = 1 gm/c.c)

9. Volume of water flow n 'through time 't' is V= cm’
. ey mprt
10. - Coefficient of viscosity of water (77) 7 dynes/cm®/unit velocity gradient

at room tempertature

Result Coefficient of viscosity of water 7

4 ’ il
npr'y . : .
m) = 8y = poise or dynes/com* / unit velocity gradient

Same procedure is followed for other liquids also. :
Precautions Following precautions should be carefully observed during this experiment.
1. The capillary tube should be perfectly horizontal. :
2. The capillary tube should be cleaned throughly with acidified potassium dichromate solution.
3. While determining the volume of liquid flow, the pinch cock should be completely open.

Viva — Voce
1. How should be the flow of liquid through the capillary tube ? How should be drops be falling from
the end of the tube into the beaker?
2. If the viscosity increases, how does the liquid flow rate change ? (increase or decrease)
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. On wha X o i i i
i o dothﬁ'i?tms. docs. the viscosity of a liquid depend upn?
! 065 e viscosity of a liquid change with increase of temperature? ‘
5. What is critical velocity? |
. . |
- . . i
6. ;);’hatdls Viscosity? Do gases also have viscosity or not? |
7. How loes .tl?e constant pressure head work. |
8. What is critical velocity? |
9. How are you eliminati g i “liqui | |
10 you eliminating the cffect of gravity on the flow of liquid through the tube?

Can Poiseuille' ; , .
cuille's method be used for highly viscous liquids?

Viva - Voce Answers

1. The liqui 5 X W it .
: liquid flow should be steady and the liquid drops should come out at a steady rate and in round |
shape. ‘

2. When the viscosity increascs, the rate of flow decreases as per —”/ ’4;,“.
3. The viscosity of a liquid depends upon ’
1. Temperature (1 decreases with increase of temperature)
2. Pressure (1 increases with increase of pressurc)
4. As temperature is increased, the viscosity of liquids decreases.
5. The velocity of the fluid above which the steady flow becomes turbulent is called the critical
velocity (v,) '
6. Viscosity is a property of a fluid by which the fluid resists any relative motion between its different
layers. As gases are also fluids, they also do have discosity.
7. Here there will be a tube (usually at the middle) which allows the water raising above its height to
flow down through it. Hence the liquid level always remains constant at the height of the tube.
8. The velocity of flow of a'liquid above which the stream the flow becomes turbulent is called
critical velocity (v,) _
9. By keeping the tube horizontal we can él'iminate the effect of gravity.
10. Poiseullie's method is not applicable for highly viscous liquids.

5. BIFILAR SUSPENSION - MOMENT OF INTERIA OF REGULAR

RECTANGULAR BODY |

Experiment No |
Date - ; '
Aim To study the oscillations under a bifilar suspension with the two filaments not being parallel

and hence find out the moment of inertia of a given metal plate of rectangular cross section.
Apparatus As shown in Fig-1 the essential part of this experiment is a metal plate ABCDEFGH of

rectangular cross section with a length (a) of 20 cm, breadth (b) of 10 cm and thickness (t)

of 0.5¢cm. Besides this, a rigid support having two hooks P and Q two metal wires of equal

lengths,' a sensitive stop clock, beam compass, vernier calipers, pin and pointer, balance.
Formula ’

ect like a rectangular metal block (or plate) Rigid Support

ABCDEFGH is hung by means two mclal' of equal lengths but not
paréllel from a rigid support 1J as shown in Fig-1. When the metal block o

(or plate) is drawn slightly aside and rclcascd,. the (b'lock) [?lutc makes

oscillations in a horizontal planc around a vertical axis passing lhroggh

its centre of mass. These oscillations are S.H.M. in quality and the time h

period of these simple harmonic oscillations is given by

T = 2 ___1_11-—— L ( l) - i.{tl,
4 Mgdd, : AWy e

From this, the moment of inertia

A regular obj

——
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Here,

M = mass of the metal plate (or block) (gm)

g = acceleration due to gravity (cm/s?)

T = time period of oscillations of the plate (or block) (s)

2d, = Distance between the two points of suspension P — Q on the support (cm) .

2d, = Distance between the two points R — S where the wrires are attached to the plate (or block)
(cm) : ,
h = Vertical distance from the point of suspension (P or Q) to the body that is PM = QN (cm)
I = Moment of inertia of the plate (or block) about a vertical axis passing through the centre of
mass of the plate (or block) (gm - cm?) '

Description

The apparatus consists of a rigid support with two
hooks P and Q symmetrically situated. From these two
hooks, two metal wires of equal lengths are suspended. A
metal plate (or block) of regular shape as AB CD EF GH
has two hooks at R and on the face ABCD of the metal
plate. These hooks R and S are exactly situated on the
straight line joining the mid points of AD and BC and are
symmetrically situated. These hooks are attached to the
lower ends of the metal Wwires. Thus, the metal plate (or
block) is hung. In this arrangement PQ (=2d)) and RS (2d,)
distance are not equal and hence the wires PR and QS (even
though of equal lengths) will not be parallel to each other.
On the face BCGF a pin is attached with wax such thaf a

- part of it protrudes out vertically above CD. A pointer is .
placed infront of the pin and parallel to it. Keeping our eye
behind the pointer, we can count the oscillations of the metal
plate (or block) as shown in Fig-2.

Theory of Experiment

H<

When a regular body is_ suspended from a rigid support by means of two wires that are
and when the body is slightly drawn aside and released, it makes s
in a horizontal plane. If 'T" is the time period of oscillation, then

not parallel
imple harmonic (motion) oscillations

T=2r £
Mgd, d,
4n? h

All the terms in this equation are already explained in the Equation - 2 Formula.
- Experimental Procedure o
First of all the length (a) breadth (b
vernier calipers. The mass of the plate M)
inertia of the metal plate about a vertical a
M (a’+1%) 3
==

Next, the metal plate is hung from the rigid support by means of metal wires from hooks at P and
Q. The pin is attached to the face BCGF with wax in such a manner that, a part of the pin vertically
protudes above BC. The pointer is placed in front of the needle and parallel to it. The plate is drawn aside
through a small angle (<5°) and is released. Now, the plate starts making oscillations. When the pin once

) and thickness (t) of the meta] plate are determine with a

can be determined with a rough balance. Now, the moment of
X1s passing through its centre of mass is given by

1
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agam ;60553§1;h§ pinter in the same direction (from left to right) it is counted as one (oscillation completed).
Thus 20 oscillations are counted and time taken for these twenty oscillation is noted from the stop clock.

de_le Sai[l‘lle procedure is repeated once again and time taken for 20 oscillations is counted for a
secon ‘m:il‘e.'d :ie averages of these two values is counted for a second time. The average of these two
values 1s divided by 20 to get the time period T. Readings are entered in the tabular form.

The .di,StanceS _P Q= Zdl) and RS (=2d2) are measured quite accurately with a beam compass. The
value of h is'determined with a metre scale,

Readings are also entered in the tabular form.

The experiment can be repeated five or six times by changing the values of h - that is by changing

the lengths of the wires.
Observations

(1) To determine the length (/), breadth (b) and thickness (t) of the plate.

On the main scale of the vernier calipers, 1 M.S.D. s =0.1 ¢cm
Total no. of divisions on the vernier n = 10

Least count of the vernier /.c.= S Oigm =0.01 cm
X B . n
S.No. Main scale| Vernier Vernier Total reading

reading |coincidence| measurement | (a+b) cm
(@) em (n) (b) =nxlc= | length(l) -
; nx 0.0l cm

AL

Average length (1) of the plate 1 = B
Reading for breadth (b) and thickness. (t) can“be had in a similar tabular form form each.

(ii) To determine the moment of inertia (I) of the plate

cm

Mass of the plate M = — gm; g=" cm/s?
SL.| b |2d |24 d 4| Tmetkemfor200) ' | T | T | 1=28.Id
! 2 ! ga . ) : 4~ h
No.| cm | em | em cm cm | oscillations (s)  (s) () | gm-cm?|
Ist 2nd Ave-
time |time(t)s| rage
1
2
3
4 :
- Average value of the moment of inertia I = ......... gm - cm* = ... kg-m?
If 1, is the volue of moment of inertia in gm - cm?’, then its value in Kg-m? is given by .
' o L=1 x 107, .
Result ' ' ‘
_The moment of inertia of the rectangular plate about a vertical axis passing through its centre of
mass is
I= gm-cm?

=kg - m?

e B AR SN e e
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Precautions )
The follow precautions are to be taken very carefully during the experiment.
. The wires should be equal lengths (PR = QS)
The face ABCD and EFGH of the plate should be horizontal.
The oscillations of the plate should be confined to a single horizontal plane.
Amplitude of oscillation should be small (<59
There should be no kincks in the wires.
‘ Viva - Voce ,
1. What is the moment of inertia of a body? On what factors does this depend upon ?
2. Arigid body is rotating about a fixed axis. The mass of the body remains constant. The, does the
moment of inertia depend on the shape of the body?
;3. In the Bifilar suspension experiment, what are the points that are symmetrically situated?
4. Which physical quantity in this experiment should be. measured more accurately? And why?
5. On what factors does the time period of oscillation of abifilar pendulum depend upon ?
_ Viva - Voce Answers .
1. It is a measure of the inertia of a body in rotatory motion. It depénds upon the axis of rotation mass
of the body and also on the distribution of the mass about the axis. -
2. Changes. As the shape of the body changes, the distribution of mass around the axis changes and

hence the moment of inertia 7 = Y2 also changes.

IS

3. The following points (pairs) should be symmetric about the vertical axis passing through the C.G. _
of the body. They are (a) The points of suspension at the support (b) The lower ends of the threads.

4. The time period 'T' should be more accurately measured as it occurs in the second power (T2) in
the formula . ' ' ' 4

5. The time period of a bifilar suspension is given by

T'=2n Mg d, a, @ndhence, it depends on (1).-Moment of inertia of the body. (2)-Mass of the

body. (3) The distance between the wires at the points of suspension and (4) The distance between
the wires at their lower points. %) The vertical distance between the ends of each wire,

6. FLYWHEEL — DETERMIN ATION OF MOMENT OF INERTIA

Experiment No

Date - ! : ‘

Aim " To determine the moment of inertia of a fly wheel about an axis passing through its centre
of mass. 4 : '

Apparatus  Fly wheel, sensitive stop clock, weights of known masses, twine thread, metre scale, vernier
calipers. - ' :

Formula - The moment of inertia of the fly wheel about an axis passing through its centre of mass is
determined in the laboratory, using the following formula. '

[=_"2 m(Zgh—ergm—cmz'

(nj+ny) w’

47”72

and @ =

Here, _ ,

m = the known mass we have used (gm)

g = acceleration due to gravity (cn/s?)

h = the heightof the mass above the ground (cm)

n, = the number of complete rotations made by the fly wheel during the time interval through
~which the mass 'm' comes down and meets the ground. :

o |

i
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Semes{e; tllle number of windings of the twi N I (A
A ine thread around the axle.

n, = the number of rotations made by the fly wheel during the time interval - from the instant the
mass touches the ground and gets detached) and the wheel comes to rest.

w = the angular velocity acquired by the wheel after the mass touches the ground (and gets
detached).
Description

The.: fly wheel is as shown in Fig-1. It is a circular wheel (W) of very large mass and is made of
m;tal. This hea\{y circular wheel consists of a long axle. A passing through its centre of mass as shown in
Fig-1 The axle.ls horizontal and rotates on ball bearing which are fixed in a metal frame as shown in
figure. Due to its support on ball-bearings, the firction due to rotation of the axle is minimized. As the
axle 'A' rotatfes, the wheel 'W' also rotates along with it. Both of them rotate together.
o Tbe_re is a peg 'p' on the axle. The end of a long twine thread ’
is made into a loop and is passed over the peg. The twine thread is
wound over the axle without overlap in circular successive circles.

The second end of the twine thread is attached to a known mass A

1 [] . . . . .. !

m'. As shown in the Fig-1, the mass 'm' will initially be at rest at a s\ \W f
]}:

Ball Fly wheal

bearing / Progecting peg

height 'h' above the ground. The height 'h' and the length of the

thread are so adjusted such that, when the mass 'm' descends and L
finally touches the ground, the end of the thread around the peg L
should get detached from the peg and fall down. By this :
arrangement we ensure that the number of windings of the thread
on the axle is exactly equal to the number of rotations made (n,)
by the wheel during the descent of mass through height 'h'". .3

To count the number of rotations made by the fly wheel, a Fig - 1

pointer is fixed in ahorizontal position and infront of the fly wheel. 8-

(It is not , . ,

shown in the figure). Just before the pointer, a horizontal line is drawn on the rim of the wheel. Every
time, the mark (line) crosses the pointer, the wheel completes one revolution.

Let us wind the twine thread n, times without any overlap over the axle, so that the mass 'm’ is
stationary at a height 'h' above the ground as shown in the figure. If the wheel is now released to rotate.
then the thread gets detached from the peg P and simultaneously the mass 'm’ touches the ground aftern,
revolutions of the wheel. The number of revolutions made by the wheel during this time in interval will

ben,. : :
1
The number of revolution can also be counted from the horizontal mark on the rim and pointer

arrangement also. _

The stop clock is immediately started at the moment the mass touches the ground (and
simultaneously the thread gets detached from the peg P) and the time taken (t) and number of revolutions
(n,) made by the wheel from this instant till the wheel getst stopped are noted down.

Experiment Procedure

First of all, the len

mass touches the ground, 1
tied to the thread is wound without overlap n, times around the a

the ground is measured with a metre scale.
Now, the wheel is released to rotate and as the wheel rotates, the mass descends down. With the

help of the horizontal line on the rim and the pointer, the number of revolutions (n,) made by the wheel
during the descent of the mass are counted.

Just as the mass touches the ground, the stop clock is started. The number of revolution made by
pto complete stop page of revolutions (n,) and the time taken (t) are noted.

gth of the twine thread and the height h are so adjusted such that just when the
the thread gets detached from the peg P and falls down. A mass m =200 gm is
xle. The height h' of the mass 'm’ above

the wheel from this instant u

4m, .
©= ; = is calculated

- -
L e

The entire procedure is repeated once again with the same 'h' and the time is noted and " 'Is foun
Average value of e is calculated.

Y
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The radiug 't of the axle is determined with the vernier enlipers, From (12) and (16) Peauations 1 g
caleulated,

Now, the same experiment can be repeated by ehanging the mass in atepa of 50 gm encly time,
Observations

(1) Radius (r) of the axle with Vernier Calipers

1 Main seale division s = 0,01 cm

No., of Vernier divisions n = 10

-

. i R
Least count of the vernier 1o, == == w0.00em
» o » no
S.No, Main scale Vernier Vernier Totnl rending
reading coincidence mensurement (nihyem ,
(n) em (n) (h) = nw s “of nxlo dinme
3 s nox 0,001 em ter (d)
1,
2,
3
Average dinmeter of axle (d)y = em
. d
Radiug === em

(i)Rotations of the ly wheel
Height of the mass m above (he grimnll =N em=cm
radius of the axle = r e¢m em
Result
The moment of inertia of the fly wheel about an axis punsing through its centre of mass
I>=(1,%10 7)/\'3,' -m’ . ' ’ '
By noting down the mass of the wheel M and its radius R we can estimate its moment of inertia

_ MR

2

-

about an axis through its centre of mass as / pm - em?

Precautions .
The following precautions are to be carefully observed during the experitment,
L. The twine thread is to be wound around the nxle without any overlap,
2. The moment the mass touches the ground, counting of n, and € should be simultancously started.
3. The ball bearings should be oiled to avoid (riction,
Viva-Voce
I. What is the use of a fly wheel ? ‘
We mention that the thread is (o be wound around the nxle without overalp. What happens if there
is an overlap?
Is the moment of inertia a scalar or u vector? o, iy is something else?
On what factors does the moment of inertin depend on 9
What is the relation between moment of inertin and (he radiug ol pyration?
6. Through which axis, the moment of inertin of o body will have the minimum value?
7. What is the equation in rotatory motion analogus # < m ain lincar motion?
8. What is the relation between the moment of inertin (1) and angular momentum (1) 2
9. Where is the most part of the mass of fly wheel is concentrated - at its centre or at the rim ?
10. To increase the moment ol inertin of o bady about an axis passing through its centre, where should
the mass be added the centre or at the rim ?

N

S W
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Vivin = Yoce Answers
L, ‘The direetton of motion can be specifically fixed.
2
the ground,
3. Moment of inertia is o Tensor, '

PHYSICS (1.M.)

4. The moment of inertia depends upon (1) The axis of rotation (lts position), (2) Mass of the body

and (3) The distribution of the mass about the axis,

|

!

. I there is any overlap, the thread will not get detached from the and even after the mass touches
\

\

|

|

P MKS with T+ Moment of inertin, M == Mass of the body and k = Radius of gyration.

6. The moment of inertin of a body will be minimum about an axis passing through its centre of mass
(L\): About any parallel axis at-a distance a from this, 1= 1., + Ma?,

Torrnn > . . _ .
7. Torque ¢ o7 ¢ 3 1= Moment of inertia and ;= Angular acceleration.

8. =1 @ (o - Angular Velocity).

( / \ g ~ . ' . 'y
). Most part of the mass is concentrated at the rith of the wheel.

10. At the rim, as a increases Ma® and henee | inerease.

7. RIGIDITY MODULUS OF MATERIAL OF A WIRE DYNAMIC METHOD

(TORSIONAL PENDULUM)

Experiment No
Date

Aim To determine the rigidty modulus (77) of the material of a given wire using torsional

pendulum.

Apparatus  The wire in the arrangement ofa torsional pendulum, pointer, sensitive stop clock, vernier

calipers, screw gauge, metre scale.
Formula .

Rigidity modulus (#) of the material of the wire made as a torsional pendulum is given by

»

r]v.?

HereM = Mass of the disc (gm)
R = Radius of the disc (cm)
[ = length of the wire (cm)
a = radius of the wire (cm)

_4aMR® (1 \dymes RRE
A o S (D

o2
a cm

T = time period of oscillation of a torsional pendulum of length 'l' (seconds)

dynes

Units of 7 = ——-. By deviding n'by 10 we get the value in [
oo .

Description

A torsional pendulum is as shown in Fig-1. It consists of a
disc 'D' (usually of a circular shape) hung by means of a long wire
I'he thickness of the disc 'D' will be very
seter. The disc is suspended by the wire
passing through its centre C and is }ighlly !i)fcd by chucknut. 'I.‘hc
upper end of the wire is suspended lr()}n a ng}d supl’)‘orl b?f passing
the wire through chuck nut as shown in the figure. 1 l}c disc llel}gs
in a horizontal position. The disc is usually -mudc f’l a metal ‘hkc
brass. A vertical line mark  is made on the side (thicKness) of the
disc and the pointer is placed vertically in front nl'.this. mzu‘k.‘Wc
place our eye behind the pointer m?d count be OSC}llutmns (?l ll}c
disc by noting the crossing of the line mark. Keeping the wire in
its position, if we draw the disc rotated through a .'s‘mull an‘glc and
release it, then due to the twist developed in the wire (torsion) the

of uniform cross section. ”
small compared toits diai

n newton
10) m?

J\

—
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dise will be making oscillations in a horizontal plane about the wire as its axis if ritation. These oscillations
are torsional oscillations and hence the arrangement is called a torsional pendulunt.

We Ieave out the first few oscillations. Then, as the line mark crosses the pointer from left to right |
we count it as zero (oscillation) and start the stop clock, When the line mark once again crosses the
pointer once again in the same direction (from left to right) we count it as one (oscillation). In this
nnner we can count about 20 oscillations and find the time period (T).

KExperimental Procedure

The disc D is supended by means of the given wire to form a torsional pendulum as shown in Fig-
[. With the help of the ckuck nuts, we first keep the length of the wire I = 50 cm. A vertical line mark is
drawn on the side (thickness) of the wire and we keep the pointer vertically infront of the line mark. Then
we rotate the disc slightly so that the wire gets twisted (by < 5%). Now we release the disc and allow it to
make simple harmonic oscillations. ' .

Observing the line mark from behind the'pointer and with the help of the stop clock we note down
the time taken for 20 oscillations. :

Without changing the length, the experiment is once again repeated and the time taken. for 20
oscillations is noted for a second time. The average value of these two is divided by 20 to get the time
period of oscillation T, ‘ '

Next, the length of the wire is increased by 10 cm, that is 1 = 60 cm and the same procedure as

above is repeated. In this way the experiment is repeated for 4 or 5 different lengths. The readings are
entered in the tabular form., '

Bach time, the length | can be measured with a metre scale. The diameter of the disc is measured

with a vernier calipers and the diameter of the wire is measured with a screw gauge. The mass M of the
disc is found with a rough balance. ' : '

Lri,
From the table, average value of 77 18 calculated.

. / . .

Al - T? graph is drawn and Tz value is found from the graph also :
These value are substituted in formula (1) to get the rigidity modulus "5’ of the material of the

given wire, ‘

Observations

' .
(1) 7- T values and e values.

L I [em
SLNof Lenght of * | Time taken for 20 Time period FE [S_ZJ }
: &7
the wire | cm oscillations t (s) Ti= Al
Ist 2nd | Average
time | time | . t(s)
. 50 cm
2, 60 cm /
3. 70 cm ‘
4, 80 cm
: d : 2' N
Average value of 7z cm/s
' 5
(2) Diameter (D) and Radius (R) of the dis’ ‘ "E
Vernier Calipers T —7
I Main scale division on the calipers S=0.1 cm /‘ ;

] —> LENGTH (1)

Total number of vernier divisions n= 10 Fig
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. Least count ol the verniey lo CA T 0.0lem ll
' - noo10 I
, : - . . o : |
S.No. Mnml;\ullu Vernier Vernier Fotal reading, |
rending comeidence | measurement (tb) em |
(n) em ' () eme nx Le Diameter of
| “nw 00lem | the dise |
2 |
RN
A,
shh w2z — . - o . - ' 3
Average dinmeter of the dise D = cm
. D :
Radiug Row e cm

-

() Diameter (d) and radius (a) of the wire-Screw Gauge
Pitch of the serew = 0,1 ¢m

No. of divisions on head scale = 100 ‘ |
I’m h of the serew () le m
Least count (Le) of scrow § yim —— oina — s = 0.00lem
(Le) of screw gauge Nn u/ /uml seale dlw.\'lunv I()()‘
( onulmn lQl the Zero error = e Fead hCillb divisions. _
Sk Nn. Pinch seale]  THead scnlc Head scale Total reading
reading Ruuhnb measurement | (atb) cm !
a (cm) ' bem=n x lc| = Diameter of
nx0.001 cm | wire
Observed | Corrected (n)
(" i
(2) - ‘
3) i
)
(5)
(0)
Average diameter of wire d = cm
L d Ry '
Radius a == = cm
(4) Mass of the disc M = gm (with a rough balance)
I N /‘
Average value of 7 ot cnys
Mass of the disc M = gm

Average radius of the dis¢ R = cm
Average radius of the wire a= ¢m
Result Rigidity modules of the material of the wire

n= i.’f"_lf_. [ ! ) dynes/ em’

u-l 7u

n :
n = (—-—) = newton/m?

ARR————— L PR

S At i e

CX Scanned with OKEN Scanner



Noesder UL IR (RPTY ",
Precantions
Phe toltowing precantiond are to he caretully observed daring the experinent

FoPhere should be no Kinksnny where b the wire,

S The diameter of the wire into be enrelily mensired with o serew g < atlenst at six differey
places < and the averape 5o be enlenlited,

LoThe diameter of the dise should wlso be cavetilly mennured with vermier calipers atlenst at oy,

diterent places and the averape B4 o be calelinted,

A The dise shonld oseillate in the same hortzontal pline wlways, 1Cshould no waobble up and dovy,
T should not osetllate to and toras o stplo pendutum,

S The anpular amplitude of oxeillation should be sl (<3").
Viva -Voee
Lo What is vigidity modultus 9
S Tnthis experiment, which physical quantity should be more neearately determined and why 7
A0 What is the meaning, in calling this o pendulum?
4 How does the time period change when (he lenpth of the wire in torsionn) pendulum is increased 7
S How should be the amplitude of torsiona! oseillations "
O, 1 the mass of the dise inereases, how does the time period of (orsional oscillations change ?
- I the diameter off the dise inereases, how does (the time period of torsional oscillations change 7
S I the thickness (diameter) of the wire increnses, how does the time period of torsional oscillations
change?
+ What is the difference between g simple pendulum and a torsional pendulum? Fixplain in terms of
restoring forees and torques,
Vova-Voce Answers ,
I. When tangential surface forces and applied on a body, the successive layers of the material are
moved or sheared. This type of strain is called shearing strain, '

The ratio of shearing stress o shearing strain in called Rigidity modulus.

|

daMR’ L !

e WI‘“) has a in its fourth power (as a'). Henco, the radius ol the wire should be
a /

measured more accurately,

3. Here, the disc is also making oscillations - Torsional oscillations around a vertical axis passing
through its centre of mass (about the wire) - and hence the arrangement is called a torsional
pendulum.

4. If lis increased, T will also increasing as per 7 T constant,

5. Should be small, less than 5°,

0. I mass (M) of the disc is increased, time period (T) also increases according to = = a constant.

mJ

S ; TR ; ‘o m { R
7. If diameter (D = 2R) of the disc is increased, time period (T) also Increases to.— = g constant.

8. If the thickness (or diameter or radius 'a') of the wire is increased, time period decreases as per a'T?
= a constant. ' '

9. Ina simple pendulum the S.1H.M is due to the restoring force which is the component of the w_cig,’h'_‘_
of the job. In torsional pendulum the S.H.M. is due to the restoring couple arising out of lorle’f'
and shearing strain. ' §
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. t 8. THE VOLUME RESONATOR
Experimen

Date ‘

: o T e v palegs , ' .
4 Aim :To verify the relation between the volume of an air cavity and the frequency of the note
producing resonance in it. ,

Apparatus : Aspirator bottle, tuning forks of difference known frequencies and a measuring jar.

Description : The volume reisonator consists of an
aspirator bottle of 1 to 2 litre - capacity, having opcning in its
side near bottom.

It is fitted with a one holed rubber into which a short
glass tube is inserted. A rubber-tube is connected to the glass
tube and a pinch cock is attached to it. When the aspil'at.of is
filled with water, a required amount of water may be drawn out
by opening the pinch cock.

. ' , Fig
Procedure : The natural frequency of the air in the resonator is given by
v |4
n=— —
2r \vL

Where V is the velocity of sound in air, v is the volume of the vibrating air upto the neck of the
bottle and L is the length of the neck. A is the cross sectional area of the neck. Since V, A and L are
constants. ' ' ‘

no —

T
If ‘e’ is the end correction at the mouth of the bottle, n? (v + €) = constant. This relation is verified -
experimentally. S - ' ‘

The pinch cock is closed and the aspirator bottle is filled with water upto its neck. One of the
tuning fork is taken and it is excited by the hammer. The tuning fork is held above the neck of the
aspirator bottle without the prongs of the fork touching neck and water in the aspirator bottle is slowly let
out and collected in a jar, by opening the pinch cock. When the volume of air inside reaches a particular
value a sharp loud note or resonance is produced. Then the pinch cock is closed and the volume of air in
the éspirator is found by measuring_‘ the water that flowed out with a-measuring jar. The experiment is
repeated twice with the same tuning fork and the mean volume (v) of the air in the bottle resonating with
a tuning fork of known frequency is found. '

The experimental is repeated with three tuning forks of
different frequencies. The results are tabulated as shown in

tabulatar form. '
The experiment is repeated with ther¢ unknown tuning

fork and volume of water is found. , : ar '
A graph is plotted taking vony axis and 1/n* onx - axis. . i / ,}“V

axis gives the end correction.

v

The negative intercept on y- Tect ,
From the graph the unknown frequency of a tuning fork
¢an be determined by measuring volume with the fork.
Precautions : 1. The tuning fork should be held with its
Prongs horizontal.
2. The position of maximum
carefully,

sound should be noted
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Semester - 1
Obsérvations X
S.No.| Frequency of Air resonating (v) n’y n? (v+e)
tuning fork (n) | Trial I Trial 11 Mean

Result :  The relation between natural frequency and its volume is verified.
- The unknown frequency of tuning fork = Hz
Viva - Voce

1. What are the physical quantities that are in resonance in this experiment 7
2. How should be the neck of the vessel used in volume resonator experiment ?
3. How should be tuning fork (in vibration) should be kept on the-resonator - horizontal or vertical ?
4. What is the end correction and why is it necessary ? ' )
5. Is it possible to find the end correction with the observation of # and ¥ without drawing the graph?
6. In the resonating air column'experiment we get two resonating lengths (/, and 1,) with the same
tuning fork. Is there any possibility in the volume resonator experiment also to get two resonating
volumes for the same frequency ? .
7. Why should we hold the tuning fork at the stem only, while it is vibrating ?
~ 8. What kind of motion does the air in the neck of the volume resonator exhibit ?
- 9. What is resonance ? ‘
10. What purpose does the water serve in this experiment ? Can we use any other liquid ?
- Viva - Voce Answers
1. Volume of air in the bottle and the tuning fork.
2. The neck should be narrow and have a finite length.
3. The length of the prong of the fork should be horizontal. -
4. As we keep the prong a little above the neck of the vessel.
5. nt(V+e)=nl (V,+e)
W V= -nf)e
n12 = n22 £ ' |
ande= —(2_2)— can be determined.
ny, —n ‘
6. No. ‘ ) ‘ :
7. If we hold at the prongs, immediately the vibrations of the two prongs come to rest.
8. Simple harmonic. - ' : et
9.. When the frequency of the external driving force equals the natural frequency of the body, the

body vibrates with a maximum amplitude and this called the Resonance.
10. The water helps us in changing the volume of air in the vessel and also in determining the volume
of air. We can make use of any other liquid instead of water. However water is available readily
and cheap. l

9. COMPOUND PENDULUM

Experiment
Date

Aim :To determine the acceleration due to gravity (g) using a compound pendulum.
Apparatus : The compound pendulum, stop watch knife edge, metre scale and a telescope.
Description : The compound pendulum consists of a uniform rectangular bar made up of iron

brass with a number of holes drilled along its length at equal distances, symmetrically on either sid?ll:
C.G. The pendulum can be suspended vertically by means of a horizontal knife edge passing through "

of the holes. -
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roce gy 8 fY
; Procedure & “The pendulum i suspended vertiently by passing n IEE it
* » 'i‘ X " " ! .
horl./,ontnl knife edpe through the hole near one end, A pin s (iged by vk ; 'l/' 0
N oY 1 "W . : %
vertically at the lower end of th pendulum, A teleacope i srinnpged ahol 0 ‘ !
' > !
e qre (1 \ o i '}(,,,’ Y
l2 eLre '“""”“’l’““lllllnnmullIu-pm i Tocnssed, The distinee betyeen n ) 7
i i f
one end of the pendulum und the knife cdpe i mensured, Pin is taken n M,
a2 04 8 4 ) TR P , y #
l-chlL!le point for counting, oseillntions, W
m Al . p 5
I'he pcnanu‘m is drawn (o o side through a sl distaice and |l %
. Wy Qs Q ¢ H 3 rvd A ' { I i i
released so that it oscillates with small ampitude in the vertical plane "
" . ' 0
without any wobbling, Looking through the telescope, with the help of the
. 3 0 ] - ‘ N p ( { . . f j
pin at the end of pendulum, time for 20 oscillation is found twice and the

mean time period ‘T is caleulated.

_ This process is repeated by suspending the pendulum from j '
successive holes and in cach case the period I and the distance of the hole : \
from the same end are measured, On approaching the €. the period f ‘ 4 ‘ i"i,l
becomes very large. The pendulum is then reversed and the experitent is g N i : X ~/'
S Hliar "/i'ﬁ'i’ff;:i.',‘!‘i',,‘#q Ao

repeated by suspending the pendulum from cach hole, Gl the other end iy i
reached. , v

It should be noted that even after eversal, the distance of the knife
edge should be measured from the same end.

A graph is drawn taking the distance of the hole from one end on the z-axis and the corresponding
time period (1) on the y-axis. The graph is ag shown as fig, The graph consists of two symmetrical curves
corresponding to the two halves of the bat.

- Aline is drawn parallel to the x -axis cutting the curves and four points A, 15, C, 1, The period is
same for all these points, The points A, C and B, D are two sets of interchangeable points about which T
is same. Hence AC or BD gives the length of an equivalent simple pendulurm 1, Actually the mean of AC

and BD is taken as ‘I’.
In the same way two or three more lincs are drawn parallel to the x-axis cutting the graph, In cach

case the length of the cquivalent simple pendulum (1) and the corresponding time period (1) are noted,
The readings arc tabulated in the tabular form (2). A second graph is draym taking the value of 1" on the
x-axis and the corresponding values of (T) on the y-axis, The graph is a straight line passing through the

origin as shown fig. ‘ -,

From the graph I value is calculated,

%)

The acceleration due to gravity i calculated

——

, / ) ) '
by substituting the value of 2 obtained either from

the graph or from calculations of the relation. i T .
I Fig.
2
=4n’ =7
g 72

Prccéutions + 1. The pendulum must be oscillated in the vertical plane with small amplitude and

without any wobbling. ’
2. The knife edge should be horizontal.

Result : Acceleraton due to gravity (£) = o cm/sec?
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Semester - 1
Observations
. Table -1
S.No. Distance of the Time for 20 oscillations - Period (T)
knife edge from Trial 1| Trial I | Mean
one end
Table — I1
E . ) [
S.No.| AC| BD Length of the equivalent T T? 77
simple pendulum
- AC+ BD

2

Mean = F
o . Y 2 b
Substituting mean value of F in the equation g'= 4 T F g can be calculated.

Note : To determine radius of gyration (k) of the pendulum about an axis through its cenﬁ'e of
gravity | er to the broad face of the bar.

Let E be the point where the AB C D cuts the ordinateé through ‘G’, If AE = h and EC = h,, then
k= I, o | |

Also if E and F are the points on the curves corresponding to minimum period, then k = £2F— . Thus
K can be determine. '
Viva - Voce

1. What is a compound pendulum ? What are the differences between a simple pendulum and a
compound pendulum ?

2. How shall be the amplitude of the péndulum ?

3. What is radius of gyration ? Does it depend upon (a) The mass of the body (b) The position of the
axis of rotation ? : :

4. Ina compound pendulum, through how many points the axis of rotation can pass through such that
the time period will be the same ? o

5. What is meant by “Equivalent Simple Pendulum”.

6. In a compound pendulum we draw a graph between ‘@’ and ‘7" Where from the values of ‘4" are
measured ? When the pendulum is inverted, where from the values of ‘d” are measured ?

7. The time period of a compound bendulum becomes infinity when the axis of rotation passes through ;;
~ a certain point in the pendulum, What is that particular point ? E
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8. The two branches of the d - T will be symmetric about a line. What is that line ?

9, ~Explain the point of suspension and point of oscillation of a pendulum. What is the distance
\ between these two points in (a) A simple pendulum (b) A compound pendulum ?

10. What is the difference between centre of gravity and centre of mass of a body ?

11. What are the reasons for the change of ‘g value at different places on earth ? Where will it share
maximum value and where a minimum value ?

12. What is the value of ‘g’ at the centre of the earth and why is it so ?
Viva - Voce Answers
1. A rigid body making oscillations in a vertical plane, about an axis passing through it and
perpendicular to the plane is called a compound pendulum.

In 'c} simple pendulum we assume that the entire mass is concentrated at the centre of oscillation. In
a simple pendulum the oscillations are possible only about one centre of suspension.
2. Very small, less than '

3. If the moment of inertia of a rigid body about a given axis is / and mass of the body is M, then from

2 . ) 1
I = MK the radius of gyration & is defined by k= \/—; . We assume that the entire mass Mis

/
i

situated at a distance ‘%’ from the axis of rotation.
k depends upon (a) mass of the body and (b) position of the axis of rotation.
4. There are four such points P, O, R and S.

5. In the above figure PR = 0S. If we take a simple pendulum of length / = PR = OS, it will have the
saime time period as the compound pendulum oscillating about any axis passing through £, O, R
and S. This length / is called the length of an equivalent simple pendulum.

6. Distance (d) is always measure from only one end A of the compound pendulum.

Even when the bas is inverted the distances are measured only from the same end A.
7. About an axis passing through the centre of gravity (C. G) the time period of compound pendulum
" will be infinity.

‘8. About a straight line passing through the pomt G (where G is centre of mas») at a distance of AG
from A and parallel to the T axis.

9. The point from which the pendulurn is suspended. or the point through which the axis of rotation

" passes is called centre of suspension.
The centre of grav1ty of the pendulum itself is the centre of oscillation. The distance between the;e

T...
4r?

two points is (a) In simple pendulum I= G

UL IO~y

and (b) In compound pendulum is calculated from T = 5 \

Centre of gravxty (C.G) is the point through which the resultant of all the gravitational forces of
attraction on the body (that is, the weight) acts.

When a body is acted on by external forces, we can describe the motion - that is its velocity and
acceleration - of the body by assuming that the entire mass of the body is concentrated at a point
at which the resultant force acts. That point is called the centre Mass (C.M). The translational,

rotational and vibrational motions of the body can be conveniently treated with the concept of

CM. '
Either the C.G. or the C.M need not be necessarily situated inside the body.

of ‘g’ on earth is due to the following reasons

10.

11. The variation

e — I A P D
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(1) The seeount of mass of the earth attracting the body changes or the rhemnclc })f:i'{/fysn the earth
and the body changpes, (variation of g due (o depth and height) (2) The rotation of earth around
iself,

The value of g’ s maximm at the poles and is minimum at the equator,

!

12, Vilue of 't the centre of the carth is zero, T his is because, there is no mass at the centre,
1, ESTIMATION OF ERROR, GAUSSIAN DISTRIBUTION APPLIED TO

SIMPLE PENDULUM

Koxperiment
Date

Al To entimate error and draw the Gawssian distribution curves for the various measurements
mvolved in simple pendulum, ‘Then (o caleulate the acceleration due to pravity.

Apparatus ¢ A metal bob, weiph less in extensible thread, retort stand, stop clock, cork etc,

Theary @ Observations must be taken with utmost care 1o avoid mistakes and systematic errors
like parallax error, Even then some errors will creep into the observations which are to be estimated.
suppone the rading of o simple pendulum bob s measured 10 or 12 times with calipers and the average
value of which in found to be | em (say), Let the mazimum and minimum values be 0.97 and 1,03 crms,
Then the radius of the bob be 14 0,0% e, Then the percentage of error in the above observation will be
Ll 7100 - 30,

A physical quantity in gencral is expressed in the terms of probable error (r). Thena + r gives the
measure of a quantity a where ‘a” is the real or average of the observations ‘e’ can be caleulated from the
average error 11, by the following formula,

14 0.8453 1 csisoei(1)
The probable crror can be calculated from the RM.S, value of error /4, by the following formula.
r 4 0.6745 i ‘ wsizarel )

When the number of obscrvations are less 7 and M are estimated by the following values.

= ) .3) 7 3
n — number of obgervations \
. > x? a
H= \/ﬂ (n— P e otts (4)
s also known as standard error or standard deviation.
Procedure : “The diameter of the bob of a pendulum is measured by

vernicr calipers at different positions, A Gaussian distribution curve is plotted. (-
The radius of the bob is estimated, The values are plotted n tables land 2. \)
Simple pendulum is arranged as shown in fig. The length of the thread is measured V555

least count 0.1 ¢m. The length of the thread it arranged at 40 ¢m, Then the length of pendulum is 'givcn
by (40+r), where r is the radius or the bob, | ength must be adjusted according to the significant figures.
A pin is arranged vertically on the bob and focussed by a telescope. Then the bob is made to vibrate with
small amplitude. Time taken for 20 oscillations are to be noted by a step clock of least count 0.2 sec (say).
The counting is started as the pin on the bob crosscs the vertical cross wire and is counted as one
oscillation when the pin crosses the cross wire in the same direction again and the time taken for 20 such
oscillations are measured. Then time period is calculated.
The length of the pendulum is increased in steps of 5 cm. Then time taken for 20 oscillations and
time period at cach length is calculated. The values are adjusted according to the significant figures. The
values or tabulated in the table 3,

¢
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/1 v.llm_ls calculated from the observations.

N T fEL 88T .
The maximum error fraction ¥ + ) X s estimated.
From cach observation maximum error fraction is calculated
(5 (I/T‘) =X (I/T“) ::‘\-l
Where (/%) is the average value,

The maximum error in that observation = 2x!

The observation in which (7/77) is greater or less then the average value of (//79) by 2x'. Then
R.M.S. error is caleulated by the formula

Then the probable error is estimated by the formula.
r=0.6745 u

PHYSICS (BN

ol
Then the standard value of //7* is given by (//T°* +r1) »
Then the acceleration due to gravity is calculated by the formula - /,/
g=4 72 (I/T? +1) n/sec? /
I — T? graph is plotted as shown in the figure / : T
The Gaussian distribution curve is drawn for /7% values. Fig
Result : Acceleration due to gravity &= ......c...... ny/sec?.
' Table — 1 _
S.No.| M.S.R Vernier V.S.R. . Diameter radus (r)
NI " Coincidence| (B)= D=A+mnxL.C-| r=D/2
(m) . nx LC
1
2
3
4
5
6
7
Average radius » = cm
‘ Table — 2
{
S.No. | Length of the| Time for 20 oscillations Time period Py
¢
pendulum (/) cm Trial 1{Trial 2 | Average (t) | T= 50 S¢¢
1
2
3
4
5
6
7
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imi Z ore in| 7 aussian curve can be
Note : A table 4 can be prepared similar to table 2 for error in (,[.2 J and gaussia nbe

drawn.

AW -

Viva - Voce
What is average error ?
What is root mean square error ?
What is probable error ?
What is Gaussian or Normal distribution ?

2
What is the maximum possible probable error in the simple pendulum formula g = 4n ( Fz')

When a large number of measurements are taken, which kind of errors will be in large number —

(a) Errors of large magnitude or (b) Errors of small magnitude.

- In the simple pendulum experiment, which physical quantity is to be measured more accurately

and why? , .
What are the reasons for the change in value of ‘g’ on-earth ?

. What is the value of ‘g’ at the centre of the earth ? and why ?

Viva - Voce Answers

. If the error in each measurement is x, then when are take # different measurements, the average

BEER

error 1= fn(n=1)

. When we take n different measurements and the error in each measurement is x, then R.M.S. error

CEZX

uz,/,/n(n—l), | Y SRR

. Probable error 7 =+ (0.6745)

4. If dx is the number of errors in the measurements having errors in the

range x and x + dx then the graph or distribution drawn between xand N ' N
following the equation dx = Ae h?x? dx is called Gaussian distribution.
A
_l. +2 _Z£
] T
. Small in number, , : . Fig. x
Time should be measured with more accuracy as it occurs in second order T* in the formula for

: [ .

2
g= 41 — | ' |
T'he variation of ‘g’ on earth is due to the following reasons.

(1) The amount of mass of the earth attracting the body changes or, the distance between the earth
and the box changes. (Variation of g due to depth and height) '

(i) The rotation of earth around itself, , ,
The value of ‘g’ is minimum at the poles and is minimum at the equator.
Value of ‘g’ at the centre of the earth is zero. This is because, there is no mass at the centre.

j
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. 11. FORCE CONSTANT BY STATIC AND DYNAMIC METHOD
Experiment
Date
: Au.n :To determine the force constant or spring constant by static and dynamic method using a
given spring. ’
Apparatu.s : Stretchable spring, weight hanger, clamping stand, weighing balance (o) electronie
balance, measuring scale, stoplock, weights. ‘
Formula : (a) Spr»mg constant (or) force constant formula for dynamic method is given by

~ dr?
(Slop of graph b/n M and T*)
Where M = mass of spring + mass attached to the spring = m + m,
m = Mass of the spring, mris mass attached to the spring |

] T = Time period of oscillations.
(b) Spring constant (or) force.constant formula for static method is given by
- v Mg A
~ Slop of graph between M and e
Where M = effective mass of spring = m + m, |
e = elongation of the spring ' |
‘ g = Acceleration due to gravity. N/m? ' |
Theory : A spring is an elastic object which stores mechanical energy. This spring has clastic ‘
nature which elongates by attaching suitable (or) variable mass to them. The spring constant (or) force
constant K of an ideal spring is defined as the.force per with length of spring. Force constant (or) spring {
constant varies from one spring to another. Force constant can be determined both in static (motionless) |
as well as dynamic (in motion) conditions. ' .
Static method : In this method The spring is fixed at a clamping stand at its one end and mass (or)
weight is added on the other end of the spring. Weights are added in equal amounts one by one, the
extension is produced in the length of the spring. Entension in the spring is noted using measuring scale. |
After adding a suitable amounts of weights, the spring will attain a stationary position after some time., At |
equilibrium there are two equal and opposite force, acting upward and down ward. |
i.e At equilibrium upward force = down ward force
fup =k.e R A (
Where e is entension in the length of the spring ' 0, A '
. . . c Y
fdp = Mg (i.e gravitational pull) : T /', \
. . . sl £ ‘
Where M is the effective mass of the spring : , : MO :fld“c ‘
- ke=Mg ‘ . M M,
Mg L of 1 2 3 4
= i |
Draw a graph by taking effective mass of spring (M) on X-axis and
elongation ‘e’ on Y-axis we get a straight line graph as show in fig. '

K

[ Sl By 74
-Slop of graph = M, - M,

Now substitute slop of graph in the k formula we obtain spring constant.

Dynamic method : If the spring is made to oscillate by. pulling the weight applied to it down
wards, it executes a simple harmonic motion. Basing on this. In this method, the spring is fixed at a
clamping stand at its one end and mass (or) weight is addf:d on the othe.r end of the spring ()scill:\lcs the
spring by pulling the weight down ward, then it set up at simple ham.mmc motion, The time period of the

oscillations of spring is

I L T T T
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M [m+m,
= = = 2%
T= Zn,f % T X

4’
(or) k = —772-— (m+m,)

N T2 772 (m+m,)

Now using stopclock estimate the time period for 20 oscillation by taking no.of trails. The time
period for oscillation noted by changing diffcrent weights on the spring.

Now draw a graph b/n M an X-axis and T? value on Y-axis weget a straight line

- T} -T7 Sec’
Slope of the straight line is = ' ' '
M,-M, kg T ,
sec? T2 T/
From above we calculate the force constant of the sprmg 1 '
Precautions : ,
1. Make sure that spring does not have any knickans.
2. note down the correct measurement of extension. (e) on the spring. 5 =T T T
. . . . Im,2 "3 4

3. Note down the time period of oscillations without any delay. ' Mkg)
4. Make sure that the spring is extensible or not.
Result : Force constant (or) spring constant of the spring, by
Staticmethod (K)=.........ccocevvvrerirernn N/m.
and dynamic method (k) = T R S N/m.
Tabular form : : :
1. Static method : »

Mass attached to extension of the Length of the ’ extension of the

spring in (grams) spring when it is - spring when spring e = (x—y)

loaded with mass (n) | nomass is loaded(y)

2. Dynamic method :

Mass attached to Time for 20 oscillation Time period T2

the spring (grams) Trail T| Trail Il Meant | T =1t/20 (sec) (sec?)
‘(sec) | (sec) |(sec)
|

Yiva - Voce

1. Does the force constant of a spring depend upon any other physical quantity, other than the materl:'
? If so, how does it depend ? v/

2. If we have to consider the mass of the spring ms also then how does the formula for time peti
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W =—
T
Now keep P at rest and allow the bob ‘q’ to oscillate in a plane pcrpepdlcular to the plane of the
strings. Time taken for 20 oscillations and then time period. T, of the bob Q is calculated. Then angular
frequency of the bob Q is given by ‘
2z

), =
2 T,
It will be found that @, = ®, . From the theory the ngular frequency of the parallel oscillations @,
will be given by,
o; + o,
2

Bring down the knot ‘U’ by 4 cm (d) from B. Displacé both the bobs through same distance in the
same direction normal to the plane containing the strings, then release. The both bobs will oscillate and
they will be in the same phase (parallel oscillations). Time taken for 50 oscillations of any bob found out

then time perod T, is calculated. Then the angular frequency of parallel oscillations  n, is given by

a, =

Displace the bobs P are Q by equal distances parallel to each other in the opposite directions,
When they are released they execute antiparallel oscillation in the plane normal to the plane contained by
strings in rest position. Time taken for 50 oscillations of any bob is observed and the time period T il

calculated. Then angular frequency @n_ of antiparallel oscillation is given by

w, =

LY

(Y

Keep one of the bob (say Q) at rest displace P and release both the bobs. Then the amplitude of P

gradually decreases, finally comes to rest while the amplitude of Q gradually increases and becomes
maximum. Then the amplitude of Q decreases while that of P increases and the
Determine the time lapsed between the two successiv
be the time taken then beat frequency @ is given by

process goes on repeating.
¢ nstances of the same bob coming to rest. Let it

2
w=—
T.

Repeat the observations for determining @,,» @y, and @ ford=38, 12, 16, 20, 24cms, According
®, —o,
to theory @ = —-2— and verify it.
The coupling constant S at each set is to be calculated by the formula.

m -
S§== ((ozn‘ - (ozn,)
5 @,

4

All the observations are tabulated in tabular columns.
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Observations

dcm 4cm| 8cm | 12em |16 cm| 20 em | 24 cm

w

L

~

IS

8

b

—

w -

e

m (a)zn] - a)z,,z)
2
Result : Stiffness constant at various distance (d) =
Precautions : 1. Amplitude of the oscillations must be small
2. Time period is observed accurately using telescope.
3. The hooks A, B, C must be arranged symetfically. _

S =

Viva - Voce
What is the coupled oscillator? 7
What do yon understand by normal modes of a coupled oscillator?
What do you mean by electronic oscillator? :

How does the coupled pendulum works?

AT ol S v

What does coupling means ?.
. | , Vlva' Voce Answérs
1. Coupled oscﬂlators are oscillators connected in such a way that energy can be transofrmed between
them. ) , . :
2. A normal mode of an oscillation of system is in the motion, in which all parts of the system move
sinusoidally with in the same frequency and w1th a fixed phase relation.
3. An elctronic oscﬂlator is an electronic circuit, that produces a periodic oscxlla’tm0 electronic signal,
often a sine wave (or) a square wave.
4. The two pendulum that can exchange energy called coupled pendulums. The 0rav1tat10nal force
“acting on the pendulum creates rotational stiffness that derive each pendulum to return its original
. position.
5. Couplmg is connection between tvx{o' oscillating systems.
13. VERIFICATION OF LAWS OF VIBRATIONS OF

STRETCHED STRING - SONOMETER
Experqim-ent '

Date -

Aim : To verify the laws of transverse vibrations of stretched strings and b to determine the

unknown frequency of a turning fork by sonometer.

Apparatus : Sonometer, turning forks with dlfferent frequencies, weight hanoer with suitable

hanging weights a cork hammer, balance and weight box.
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Deseription @ The sonometer consists of o

hollow, wooden sounding box and of length more than Ry T a
one meter, Onthe top of the box and at each near and o L - K h
wooden prismatic bridpe with o metallic edge is fixed, 5

A short peg s fixed at one end af the top of the box to ‘ Fig T
which one end of w string, (or wire) =

is nttached while the other end o the string, passes over a pulley supporting a weight hanger. By udflmg
A suitable foad 1o the weight hanper, (he string can be kept under suitable tension, Between the fixed

bride at the ends of the sonometer one or two movable bridges are placed under the string so that the
length ol the vibrating sepment of the string can be adjusted.

Procedure : n) Verilieation of 1 law : According to the first law, the frequency of vibration of a

stretehed string is inversely proportional to its length provided the tension and the mass per unit length
remain constant,

Thus i string of mass per unit length () is kept at a constant tension (T), it follows that n @ 7

oty il - constant, where n is the [requency of vibration of the string and / its length.

To verily the T law, the string of the sonometer is kept under a-suitable tension. A tuning fork of
known frequency is excited by the hammer and its shank is placed on the base of the sounding box. A
light paper vider in the form of' V shape is placed centrally on the string between the fixed bridge and the
movable bridge. The length of the wire is adjusted until the paper rider flutters vigorously and falls
down. In this position he lrequency of the vibrating segment of the string between the fixed bridge and
movable bridge is equal to the frequency of the tuning fork. The length / of the vibrating segment of the
string is measured.

Keeping the tension constant and using the s
tuning forks and the results are tabulated as
that 1 x /is constant.

ume wire, the experiment is repeated with different
shown in tabular form (1) The first law is verified by showing

b) Verification of I law : According to this law [requency of the vibratin
directly proportional to the square root of the tension provided the length of the
unit length are constant.

g segment of a string is
string and its mass per

Or,n g T (When 7 and m are constant)

Where nis the frequency of the vibrating segment and T is the tension applied.

g L7 o . M : [P ) ‘ ) L \ T .
[ aw is verified indireetly by keeping ‘n’ and *m’ constant and showing that / o /T or, — is
constant,

Thus to verify the I law, a tuning fork is taken and the string is kept under
fork is excited and placed on the sounding box. The length / of the vibratin
between the fixed bridge and the movable bridge is found by the paper rider t
tension constant and using the same string (wire), the experiment is repes
observation are tabulated as shown in the Table 11,

a suitable tension T. The
g segment of the string
est method. Keeping the
wed with different tensions. The

L4 Al

IT law is verified by showing that e is constant,

¢) Verification of 111 law : According to this |

string is inversely proportional to its mass per unit leng
are kept constant.

|
Or,n & 7"; (When T and / are constant)

aw, the frequency of the vibrating segment of a
th provided the length of the string and its tension
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W Law is verified indirectly by keeping *n® and T constant and showing that

on X m = constant

Toverity the THaw, a string (or wire) is kept under a suitable tension. A tuning fork is excited and
placad on the sound board, The length of the wire is between the fixed bridge and the movable bridge is -
found with paper rider test method. A known length of the wire is taken and its mass is found in a balance

from which the mass per unit length of the wire (m) is found.

Using the same tuning fork and the same tension, the experiment is repeated with different materials

of wires and the observations are tabulated as shown in table iii.

d) Determination of unknown frequenu : The sonometer wire-is kept under a suitable tension
1. The tuning fork of unknown frequency *n' is excited and placed on the sounding box. The length of the
vibrating segment / of the wire having the same frequency ‘n’ is found by the paper rider rest method.

Using the same wire, the experiment is repeated with various tension and for each tension, the
kength *7” of the wire is found by the paper rider test method.

ln cach case the tension is found by T = Mg, where M is the load applied at the and of the wire. The

obsarvations are tabulated as shown in mble (iv) and the average of e is found.

A known length of the wire is taken and i its mass is found by the balance from which the mass per
unit length of the wire can be determined.

The unknown frequency n” of the tuning fork is found by the relation.

Observatons : Tables 1, ii, il iV
Precautions : 1. The pulley should be frictionless.

> The runine fork should gently be pressed on the sonometer board.

Table (i)
Verification of I law
S2No. Frequency Length / nxl.
nk- I trial 11 trial Mean (/) = constant

L —
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Table (ii)
Verification of IT law -
N ' T
8.No. | Tension T Length of the wire / 7 constant
Table (jii) Verification of III Law
S.No. Length of wire | m I \Jm = constant
‘ [ cm A
Table (iv) ,
Determination of unknown frequency :
. ‘ T
S.No. Tension T mg [ : NG
T .
Average T

k . 1 (T
Frequency of the tuning fork'n = N_f?—? _l—

Result : The laws of transverse vibration are verified
The frequency of the tuning fork = .......... Hz. _
Viva - Voce :
1. To which kind the wave travelling along a stretched string belongs to.?

2. Which of the following properties will be possessed by a wave travelling along a stretched strin‘g‘._;iz
that is fixed rigidity between two supports 7 _

(@) It is a stationary wave, (b) It is a transverse wave, (c) It is polarized, (d) It will have all
above three qualities. '
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3. In connection with the transverse vibrations of a string, to which number of harmonic the fourth
over tone corresponds to ?

4, Om thlls cxpc.rim'cnt, several times we use the sentence ‘when the string vibrates in one segment’.
What is the significance of vibrating in one segment ?

If it does not vibrate in one segment, what difference will arise ?

5. Of the three different verifications, which one will enable you to measure the velomty (v) of
transverse wave along the string ?

6. Of the three different verifications, which one will enable you to measure the frequency (n) of
transverse wave along the string ? ' |

7. What is the difference between a progressive wave and a stationary wave ?
8. What is the difference between a longitudinal wave and a transverse wave ?
9. What is natural frequency of a body ? When does resonance occur ?
10. What is the advantage of sound box in the sonometer ?
Viva - Voce Answers : i
Transverse wave,
(d) It will have all the above three qualities.

':')!\)_‘

Fifth harmonic.
When the wire vibrates in one segment only, it will be vibrating with fundamental ‘frequebncy n,

- 1\/7
riven by 1= —.,[—
B y 21 \'m
n |T

If the wire vibrates in p segments or loops, then it will be the pth harmonic and 7, = 51‘ —

>

5. From the verification of the first law, we have n x / = a constant.
Now, thé velocity v = 2nl can be easily calculated.

6. From the verification of the second law, we have e = a constant. Now the frequency can be

1 /7 1 (4T
calculated from n= 2\ b 2Im e

7. A progressive wave always travels in the forward direction only and gets never returned back. A
stationary wave will be confined to a limited space.

8. In a longitudinal wave, the particle of the medium will be vxbratlng ina dlrectlon perpendxcular to
the direction of propagation of the wave. . :
In a transverse wave, the particles of the medium will be vibrating in a dlrectlon perpendlcular to
the direction of propagation of the wave. 4 ‘

9. When a body is not subjected to any external force is v1brat1ng on its own accord, these v1brat1ons
are called natural vibrations and the frequency of vibration is called the natural frequency.

When the frequency of the external driving force becomes equal to the natural frequency of the

body then resonance 0CCurs.
10. Sound will appear with larger intensity.

14. DETERMINATION OF FREQUENCY OFA BAR - MELDE S EXPERIMENT

Experiment
Date
Aim : To determine the frequency of an electrically driven tuning fork.
Apparatus : An electrically maintained tuning fork, a light smooth pulley fixed to a stand, a light

scale pan, thread, a storage cell. rheostat, plug key and connecting wires.
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ectrically. One termu
Description : A fork can be maintained India state of continuous vibration electrically. One termina

N .y - “ yher o o)
of the coil of an electromagnet is connected to the make and break arrangement and the other end of the

coil to the cell, rheostat and plug key connected in series. In the normal position when the circuit is
closed. the electromagnet attracts the prong of the fork towards it. This breaks electrical circuit and the
prong moves back closing the circuit. The clectromagnet again attracts the prong towards it. This i

repeated again and again and the fork is maintained in a state of continuous vibration.

One end of the. thread of length about 3
meters is joined to a screw attached to one prong
of the fork and the other end is passed over a
smooth pulley and a light pan is fixed at the other
end of the thread.

When the fork is vibrated electrically,
. stationary waves of welldefined loops.

Meld's apparatus can be arranged in two

modes of vibration a) when the direction of motion
of the prong is at right angles to the length of the
string. the vibrations of the thread represent the
iransverse mode of vibration and b) when the
direction of motion of the prong is along

the length of the thread represent longitudinal mode of vibration.

Procedure : 1. The apparatus is arranged in transverse mode of vibration of the thread (Fig). A
suitable load is placed in the scale pan. The tuning fork is excided electrically. The length of thread is
adjusted by moving the pulley untill well defined loops are formed in it. The distance between a definite
number of well defined loops (say 3 or 4) is measured with a meter scale from which the average length
[ of a single loop.is determined.

The total load attached to the thread inclusive of the mass of the pan is noted. If it is Mgm, the
tension applied on the string is T = Mg. Where g is accelération due to gravity.

The mass of the thread (about 5 meters in lenOth) 1s determined correct to a nullmmm The mass
per unit length of the string (m) is then determined. The frequencv n of the turning fork is founded by the
relatxon

1 VT

n=— —

2l m
The experiment is repeated for various lensions and the observations are tabulated in table (1) and
n is calculated.
2. The apparatus is arranged in longitudinal mode of vibration of the thread. The experiment is
done in similar manner as in 1. The average length 1 of a loop, the tension T. applied to the thread and the
mass per unit length of the thread (m) are found. The frequency of the tuning tork is found by the relation

1 |T
n=7 4/ :

I \m
The éxperlment is repeated with different tensions dlld the obsumtmns‘ are tabulated in Table (i)
and n is calculated.
Precautions : 1. A thin long and inelastic thread should be used. .
2. The loops should be well defined and confined to a single plane.

R S W s ﬂj
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The mean of the twi average frequency m the ranverse and the longitudinal modes gives the f
cortect frequency of the taning fork.

Observations : Mass per unit length of the thread (m)

S No. T Mg

S 1110
Transverse Made (1)
| Jr

Length of i Length of each loop r
" l 3 {e "

(NVP‘. ' ,

VTSRS G U UL WP ICIIII TSRO I—

i
Average ~i* W e
JT

Thon nm e X

-

-

T —— v St ———
1

S No. T=Mg

m !

Longitudinal Mode (ii)

Length of

P loops = L

VT

Thenn = “p= = o
Then \/’m / V
Result : The frequency of the trning fork n -

Length of each loop

Viva - Voee

1 S A

r
Average \-}w -

In this experiment Wwe use o mindes or two ditforent kiodds of arvangements. In cach mode, what

kind of waves (transverse of longitudinal) are formed along the stretchad string 7

What should be done to change the number of loops formed 7

vibration of the stretched thread (0 related 1o cach other in

(1) The transverse miode and

(i) The longitudinal mode,

Are the waves formed in this experiment stationary oF progrossive

How are the two frequencies (a) The freguoncy of the tng foek (N and (b) The fraqueney of
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A How will the Jy L peaphi Took Tike

i
i

in the fransverse maode and /- / in lohgitudinal

O, Whint is the peanon for pelfing N -~ "

2N i }
, , _ therifi “the sl change
mode 7 I these twao different modes, how will the frequency of vibration of the thread change 7

* ‘ Q' 1) i ¢
7oA the number of oops formed in transverse mode is p, under the same tension (1) and for same
lenpth (0wl thrend, Tiow many loops will be formed in longitudinal mode,

Ko What are the different modes nued in this experiment 7 Eeplain,

Viva = Vove Answers
oI both arrangements (modes), the waves along the stretehed thread will be transverse waves only,
2o Stationary wives,

Ao By changing (1) The tension 7' My - that is by changing the masses in the pan or (2) By changing
the Jength (/) of the thread between the pully and the prong,

A o the transverse mode or arrangement only, the frequency of tuning fork (V) will be equal to the
frequency of vibration () of the thread,

N Transverse mode s N = 2= in Longitudinal mode
I both arrangements, the frequency of the tuning fork will not change,
For the same length of the thread (/) and samie tension (7), in the case of the thread.

() In trameverse mode n = N of the tuning, fork

(b) In longitudinal mode

7S

In Melde's experiment, the graph between (f7 and 1 will be a straight line,
6. (When 1 & 7 are kept constant), the frequency of vibration of the thread in transverse mode = N

N
and i Jongitudinal mode '2-' (Where N = frequency of the tuning fork). This is because, in the

transverse mode the wire or thread vibrates in accordance with the vibrations of the fork. But in
longitudinal mode, while the fork completes one full vibration, the thread will be able to complete
only half the vibration,

7.8 the number of Joops in transverse mode is p, then under same tension (1) and for same length ()

. . / 4
of the thread, the number of loops will be 2 only.

#.(n) Transverse mode < in which the vibrations of the rods or prongs will be perpendicular to the length
of the thread, | ‘

(h) Longitudinal mode - in which the vibrations of the rods or prongs will be parallel to the length of
the thread, ‘ '

’ 15, DAMPED OSCILLATIONS = TORSIONAL PENDULUM
Experiment
Date

Adm 2 Study the damped oscillations of a torsional pendulum in the shape of a circular dise in air
and water, and determine the logarthmic decrement,

Apparatus ¢ Torsional pendulum in the shape of a cicular dise, lamp and scale arrangen
cireular mirror (Concave mirror of focal length 50cim), Stop clock, plass tub with water,
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Doseviption A metal wire of wiitorm el
ervs seetion besisgpended rom a chneknnt fised e 4‘¢‘I'A
o b xhaped elamp e oo wall, The lower -r.\‘:“‘i',',?" : p t‘":"}.a?
e OF the wite e attached o another eheknut .\\\\“'-‘":‘ K
et toa torsdonal peadulom consdsting ol i \ \\‘Iﬂl}ﬁ AN

(2

arrangenient i keptat adistance of' 1 met, from (

orvular dises Phe small etrealan mbror attiehed ( J
Wl .“s
} { e ] _;
\

with beeswan to the wive, Lamp and seale o —
¥, e

7

Fig,

the wiror The amination of (he oy i wade mindmum o gemidark, The Tight from the lamp s
tovnssad onthe small cieeutan wiveor and o bripht elreutae apot of Hight in obtuined on the transparent
seale of Tamp and seale arangement,

Theory t The amplitude of damped vibrtions does not remain constant, [t decreases exponentially
with e The amplitude of tossional pendulum deerenses with time due (o viscosity or resistive forces
causad by the surrounding air or water or any medium as the energy of vibration is dessipated, 1f 0, is the
angular amplitude without damping and ¢ s the amplitude at time 1, the equation, 0 = 0, ¢ &

Gives the vatiation of angular amplitude with time, 101 is (he resistance per unit velocity and m is

r P
the mass of the osctllator ‘m 2bor b = coellicient o damping

2m

10T, is the pertod of damped vibration
n
T s
' \/ @ b

2
-
Where @+ angular frequency of the (ree oscillator R
T = period of free oscillation
Let 6,,0,,0,,0,.0, be the successive angular amplitudes at a point on the wire of the torsional

pendulum

d = decrement, 4 = log_d = logarithmic decrement,

6,.0, and 0,, 0, are separated by half pcrimi

_(ﬂ_ - (,A - (,I-:/: 5
0, (or)

1

b

~

A=

12|

Procedure @ A small concave mitror of local length 50 ¢m is attached to the wire of torsional
pendulum. Lamp and scale arrangement is kept at a distance of | met from the mirror, The light from the
lamp and scale is focussed on the mirror to get a bright circular spot of light on the plastic transparent
scale. The circular disc is rotated about the axis through a small angle and released. Due to the restoring
orce due to the elasticity of the wire and moment of interia of the disc, torsional oscillations are produced.
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The bright spot on the scale executes simple harmonic motion on the scale as it is formed from th'f' light
reflected at the circular mirror attached 1o the wire of the torstional pendulum. The angular zmplitude;
are proportional to the amplitudes of the light spot 0, 0,,0;,0,and 0, on the scale they are an‘rA
successively on the lefi, left ctc. The time of twenty oscillations is noted using a stop ‘_"]"’Ck' The .
length is changed by 10 cm and observations are taken. Next the torsional pendulum is suspended in
water and the observations are taken as in air. '

Observations in air

Length of the torsional pendulum = / = cm
Period of oscillation = T = sec ]
S.No. Amplitudes Ratios of amplitudes logarthemic decrement
J =log d
0,
% 6,
0, _
% 6, |
6, ?
2 e -‘
3 94 '
O, _
94 0, + i
Average ratio = decrement = d
Logarithmic decrement = } = logd
/. =2.303 log, d
Observations in water : .
Length of the torsional pendulum = /= cm
Period of oscillation = T = cm '
S.No. Amplitudes Ratios of amplitudes logarthemic decrement( 7 )
. [
A =log d §
6, %
0, e 2
1 92
6,
0 —_—
2 .93
0,
o, 0, =
. 0,
0, 0, =

Average ratio = decrement = d

Logarithmic decrement = }, = log d

A =2.303 log,, d

Logarithmic decrement can be determined from they observations.
Precautions : “

1. The wire should be free from kinks.

2. The disc should execute oscillations in the horizontal plane.
3. The room should be semi dark.
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4. The lamp and scale arrangement should not be disturbed after making zero adjustment,
5. The circular mirror attached to the wire should be concave.

Notes : 1. The cocflicient of damping b can be found from logarthmic decrement A usng equation

bT

g

2
The value of b depends on density and viscosity of medium.
2
2. The period T = \/"‘(7’“—‘2 for damped vibration. Where wis angular frequency of free vibration.

. 7T . ' P v
The period T = Py for undamped free vibration. The rigidity modulus of the wire can be determined

more accurately correcting for damping of oscillation of torsional pendulum.

. A
3. The amplitude & =0, | 1+ 5 | approximately.

Viva - Voce
What is damping ? What is the reason for dampng ?
In how many different ways the damping can be explained ?
In which medium, air or water, the damping is more ?
Due to damping, what changes will occur in resonance ?

Is damping always dlsadvantagesous ? or, are there any advantages for which damping can be used
?

Al

&

If damping increases, what will happen to the sharpness of resonance ? (Will it increase or decrease)
7. What are the units for Logarithmic decrement ?
8. Why a lamp and scale arrangement is used in this experlment ? Can you mention any other
experiment in which this arrangement is used ?
9. What is the combined arrangement of the disc and the metal wire is called ?
10. In a damped harmonic motion, how does the amplitude change with time ? (Name the functional
relation). '
11. What is the difference between a simple pendulum and a torsional pendulum ?
Viva - Voce Answers
1. If the amplitude of an oscillator decreases with time and ultimately reduces to zero, the process is
called damping. Frictional and viscous forces are responsible for this damping.
2. Damping can be described by three different methods (i) Logarithmic decrement, (ii) Relaxation
time and (iii) Quality factor Q.
The damping in water is more than in air,
As damping increases, sharpness of resonance decreases.

Cal

5. Damping is used for advantage in the construction of speedometer, in bringing the oscillation of

the pointer of a galvanometer or a ballistic galvanometer to rest immediately.
6. Decreases. The resonance curve gets flattened.

0 - 0
1, ) ! . . . .
7. This a pure number. 0. s a ratio and hence log 0, will have no units and dimensions.
2

8. To measure the angular displacement ‘() more accurately and conveniently.
The same arrangement is used in a moving coil galvanometer.
9. Torsional pendulum.

10. As an exponential function. s
11. The oscillations of a simple pendulum are ordinary to and fro oscillations ; where as the oscillations

ofa torsxond] pendulum are torsional oscillations.
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MODEL PAPER -1
. B.Sc., First Year, Semester - 1,
. PHYSICS
Time : 3 Hrs.| ' [Max. Marks : 75 -
. Section - A (5 x 10 = 50 marks)

Answer ALL questions with internal choice from each unit.

1. Derive the equation of motion of a system of variable mass. (Or)
Deduce the equations of motion for a rigid rotating body. |
2. State and prove chier’s laws of planetary motion. (Or)
Define central force and give its characteristics. Explain its conservative nature.

3. State the postulates of the special theory of relativity. Obtain Lorentz transformation equations.
-(Or)

Describe the Michelson- Morely experiment with necessary theory and derive the expression
for fringe shift. :

4. Obtain the equatlon of motion of simple harmonic oscillator. Derive the differential solutlon of
smple oscillator. ‘ '(Or)

Obtain the normal mode frequencies of two pendulums connected by a massless spring.

5. What are trasnverse waves ? Derive equat1on of Motion of a transverse wave in a streteched
string.

| ©On)
Describe any one method for production of ultrasonic waves.
Section - B (5 x 5 = 25 marks)
Answer any FIVE out of the followmg ten questions.
Write a short note on impact parameter '
Write a short note on Gyroscope.

State Kepler’s laws of planetary motion.

N e o

Explain motion of satellite.
10. - Shrot note on Lorentz Contraction."
I1.  Einstein’s Mass-energy relation.
_12. Resonance and its examples.
13. What is coupled oscillator give examples ?
14.  What are overtones and harmonice 7

15.  Give two methods for detection of ultrasonics.
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B.Sc., First Year. Semester - 1,
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ime ¢ 3 Hrs.
Time ] [Max. Marks : 75

Section - A (5 x 10 = 50 marks)
Answer ALL questions with internal choice from each unit.

1. \W?I li Ruther Ford Scattering ? Obtain an expression for the Ruther Ford scattering Cross-
section? -

(Or)

Derive the Euler's equation of rotational motion for a rigid rotating body.

rJ

What is central force ? Derive equation of motion of a body under a central force. (Or)

: SI&I? hepler‘s laws of planetary motion. Deduce the third law relating to the time period and
SemI-major axis. ’ :

V)

State the postulates of the special theory of relativity. Derive the mass-energy relation. ( Or)

Derive Lorentz transformation equations. Explain length contraction in relativity.

:‘A

Discuss the differential equation of a forced damped oscillator and obtain its solution.  (Or)

Obtamn the normal mode frequencies of N-coupled oscillator.

)

Obtain the modes of vibration of stretched string clamped at both the ends ? (Or)
What are ultrasonic waves ? Explain applications of ultrasonics with necessary theory.
Sgction - B (5 x5 =25 marks) |
Answer any FIVE out of the following ten questions.
Explain motion of a Rocket. ' - -
Explain precession of symmetric. top.

Exax}lplés of central forces.

o B N

Global positioning. system.

10.  Explain types of frames of references. -

1. Shrot note on time dialation.

12. Short note on relaxation time and quality factor.

13, What is difference between harmonics and overtones.
14, Characteristics of simple harmonic oscillator.

15, SONAR.
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Semester - 1

Time : 3 Hrs.] [Max. Marks : 75

Section - A (5 x 10 = 50 marks)
Answer ALL questions with internal choice from each unit.

1. Using system of variale mass, explain the motion of a rocket. Discuss about multistage of

rocket.
(Or)
What is rotatioal motion ? Derive the relations of Rotational kinematics.
2. What is central force ? Show that conservative forces as a negative gradient of potential energy.
(Or)
Deduce the Kepler’s laws of planctory motions.

3. State the fundamental poétulatc’:s of special theory of relativity and deduce the lorentz
transformation equation. (Or) '

Describe the relevant theory and result of Michelson morely experiment. Discuss the negative
result of this experiment ?

4. Derive the equation of motion of damped harmonic oscillator and find its solution, (Or)
Give the theory of N-coupled oscillators an extend it to obtain the wave equation. |
5. What are transverse waves ’:7 Obtain equation for the velocity of transverse wave in‘a stretched
string.
} (Or)
Describe the magnetostriction method of producing ultrasonics.
Section - B (5 x 5 =25 marks)
Answer any FIVE out of the following ten questions.
6. Short note on scattering cross section. ‘
7. Explain precession of equinoxer.
8. Characteristics of central forces,
9. Expression for variation of mass with velocity,
10, Postulates of special theory of relativity.
11, Explain amplitude resonance.
12, Simple harmonic oscillator cxumplés. 1
13, Explain melde’s strings. |
14.  Types of crystals used in production of ultrasonics.

15, Applications of ultrasonics,
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