

III BSC SEMESTER-V

ELECTRICITY, MAGNETISM & ELECTRONICS

PHYSICS PRACTICAL MANUAL (PAPER V)

2022-2023

(Old Syllabus)

Department of Physics Sri Y.N.College (A) Narsapur

	2	Index					
	Sr. Vo	Name of the Experiment	Page No:	Date of Experiment	Date of Submission	Remarks	
	L	Carey Faster's Bridge	1-5.	22-10-2021	9		
	2	Kixcha-ff's law	6-9	29-10-2021			
3	3	Figure of mexit of a moving coil galvanametre.	<i>l</i> o13	5:11202.]			
JJ.		LCR Cizcuit - Series Resonance	14 - 17	9-11-2021			
	5	Sonometre frequency of A.C. supply	J8 2J.	.1611 - 2021 .			
0	6	Steward and Gee's Galvanometre	22-25	.16 - 11 - 2021			
	JU						

CAREY FASTER'S BRIDGE

, 3	Aim: To Compare two wearly equal resistance and lo determine the specific resistance of a wire.
. 12121	to determine the specific resistance of a wire.
	Keristanie VIII. V.
Charle	Apparatus: - Carry Fosters bridge. Two wearly equal
1	issesister resistance, sensitive galvanometer, jokey, unkno
	Apparatus: - (arry Fosters bridge. Two wearly equal resister resistance, sensitive galvanometer, jokey unknownstance wire, standard resistance.
	Formula: - Resistance of the given wire
	$x = y + (l_2 - l_1) f_{\Delta}$
	Where x = known standard Resistance
	Li = Balancing light of the left side.
4.5	12 = Rolancing lighth of the Right side
رع	Specific resistance of the material of the wire is
	and the Arman Arma
100	S=X.a. ohms.chan administration of
	Where x = resistance of the wire.
	a = area of cross = section of the wire
1 1	
UX- 5	
2 1U 24 mj	- Tr2
Shem)	of the wire.
On the	- Tr2
(made	s = radius of the wise. 1 = length of the wise.
(20 40	Theory: - The carey faster's bridge is in a defined from
(0) (0)	Theory: - The carey faster's bridge is in a defined from a metre bridge in which effective resistance of bridge
(0) (0)	Theory: - The casey faster's bridge is in a defined from a metre bridge in which effective resistance of bridge in considered without increasing the actual length
	Theory: - The carey faster's bridge is in a defined from a metre bridge in which effective resistance of bridge in the actual length of the wire is considered without increasing the actual length of the wire if consists of four gaps two equal resistance.
	Theory: - The carey faster's bridge is in a defined from a metre bridge in which effective resistance of bridge in the actual length of the wire is considered without increasing the actual length of the wire if consists of four gaps two equal resistance.
	Theory: - The casey faster's bridge is in a defined from a metre bridge in which effective resistance of bridge in which effective resistance of bridge in the increasing the actual length of the wire if consists of four gaps two equal resistance on connected two gaps q, and G2. Two weary equal
	Theory: - The carey faster's bridge is in a defined from a metre bridge in which effective resistance of bridge in the actual length of the wire is considered without increasing the actual length of the wire if consists of four gaps two equal resistance.

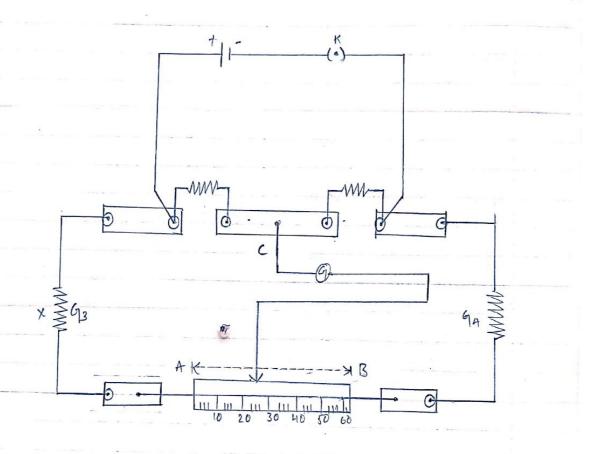


Fig: - Circuit diagram for carey faster's Bridge

Expt. No. Name. Page No. 2
bla. A and B -through key. The point c between Pand is connected to a jockey -through a resistive galvaname -tre G.
and scale anding pathon start book of
Principle: Let 1. be the balancing length from the end A and B P to be linear density of the bridge box.
Acc to be principle of wheat stone's bridge, we have $\frac{P}{Q} = \frac{x + l_1 f + a}{y + (100 - l_1) f + b} \longrightarrow 0$
Now, If the resistance x and y if the gaps 93 and 94
ax Intericharged let the corresponding balancing length
$\frac{P}{Q} = \frac{y + \lambda_2 \int + \alpha}{x + (100 - \lambda_2) \int + b} \longrightarrow \emptyset$
From equation of and of the have
$x+l_1f+\alpha$ $y+l_2f+\alpha$
Y+(100-l1)f+b x+(100-l2)f+b
Adding I on both sides, we get
$x + l_1 f + a + y + (100 - l_1) f + b$ $y + l_2 f + a + x (100 - l_2) f + b$
y+(100-11)+b x+(100-12)+b
x+y+1008+a+b x+y+1008+a+b
7+(100-l1)s+b x+(100-l2)s+b
Now, equating the denominators, we get
x+ (100-l2)8+b - y+ (100-l1)5+b
$\therefore X = Y = (l_2 - l_1) f$
Thus the difference between the two resistance (
and y) is equal to the resistance of the bridge
wire bla the two balance points.

To determine the linear resistance I (resistance per cm) of the bridge wire (or) collibration of the bridge wire:

		a wa ni a zaw	LOUIS CONTRACT	and the second	
	5.NO	Standard Resistance	Balancir	ng length	
		Kesistance	When X is in	When x isin	ance exact
J	ahi).	ne levije key.	G3 (licm)	Gy (l2 cm)	$= \overline{(l_2 - l_1)}^{Ohm/a}$
	1	0.1	45.6	50 13 3 10 210	.0.02
	2	0.2	ml71.8 box	66.7	0.039
	3	0.3	65.5	76	0.028

To determine—the resistance of x of the given wire:

1		- Where X = sesselence of the more
5.NO	Resistance (_2) y	Balancing length (cm) x= Y+ (12-11
	(32) 4	left (1,) Right (12) S (ohm)
	· ·	- and the down
. 0		
	- 15- unolvino	21 61.7 2 20 20 23:2 31 1.6165
2	1	2.2615
Y 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	· Inner	1901 100 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Resistance of the wire = 1.939 "

Expt. No.	Name.	Date.	Page No. 1
	proceding and whole down	the balancing	length 12 for
	the same value of the s	standard resisto	ince.
	13. Note down the observa-	tions in the L	able.
	14. Calculate the linear res		
	in each base and their	fixed the mein	value of P.
	- To determine the resiste	ance of the g	INEU MIXE?-
	1. keep the circuit connect		
**************************************	2 Connect the wire for x		
	resistance of John fox y	•	
	3. Close the circuit by med	ans of the ke	y .
	4. Bress the jockey along, -	the bridge bridge	ge wire as
	different until the galvano	metre shows 7	ero deflections.
	5. Find the balancing length	with the M.	R in the wise.
4	6. Cut off the H.R and fix		
	the scale from the left e		
	7. Interchanged the unknow		
	standard resistance (12) s		
	nce is in the gap G13	and the wire	in gap Gy.
	8. Fixed the balancing len	igth with the	M.R and by
	ishort circuting the H.R.	9 1 1	
	9. Find the exact balance	J J	
	10. Repeat the above proce		
	11. Note down the observa		
-	W. Calculate the resistance	of the given i	wise using the
	relation	<u></u>	
	X = Y + (12-1))	
	1		
	1		

Calculation:

9 = XTT 82 = 3.2207 ×10-3 4.8799 x105 ohm-cm

KIRCHOFF'S LAWS

xpt. No. 2 Name. Date. 29 – 10 – 202 Page No. 6	,
Aim: To verify Kirchoff's laws.	
Apparatus: - 1. Battery - 1 (0-30v)	٨
2. Bread Board	
3. Digital multimetre-1	
4. Resistor - 3 (560-2, 1kg, 3.3 kg)	30
5. Connecting wives	
1881 1360 1086 1086 1186 1186	
Formula:-	100
! Kirchoff's current law (KCL) cor Point law:-	0
$T_1 = T_2 + T_3 + T_4$	-
Where I = The current entering the common mode	,
(0x) junction in the circuit. 12.13 = currently leaving the common node (0x) junction in the circuit.	
V=V1+V2+V3+V4	
where v = voltage applied to the close circuit.	Spready T
iv, v2, v3, v4 = PDS accross the resistor in the close	ed
Theory: - An application of ohm's law for the calcul	la
i-on of current in possible only in the case of	
simple circuit where in the resistance can be	
reduced to simple series or parallel arrangement	1
The currents in the different branches of a	
complicated mesh (or) network of conductor one	to

Circuit diagram to verify kirchoff's corrent law: Regulated Power supply (0-30V) Circuit diagram to verify kirchoff's voltage law V2 VI Rz

KIRCHOFF'S LAMB

To verify kircheff's voltage law (KVL) (or) Point law:

5.NO	Applied Voltage	Curr	Current flowing out of the node			$T = T_1 + T_2$ $+ T_3 + T_4$
	(v)	T,	12	Γ_3	1 24	Camp
	1.36	0-44	0-36		0.29	1.36
2	1.39	0.45	0.37	0.27	-0.30	1.39
3	1.47	0.48	0.38		0:27	
4	1.45	0.47	0.38	0.28	0.31	1.45
- 5	1.54	0.49	0.40	0.30	0.32	10° (-52
6	1.63	0.50	0.47	0-31	0-34	1.63

w. w. w. w. Pits accourse - the recivition in the closed

citizate a solo alle ale bollone especiale e especiale

the of the time of any locale cate out

hapte the cot exert in the maintance con the fail of the control o

a in 20 hand promite and in heaven of

or the coloubant of sometimes are the

Expt. No.	Name. Date. 29 – 10 – 21 Page No. 7
	be calculated this law will be in adequate. Kirchoff's law is very useful to calculated
V+,\	with the study currents flowing in different in
_,Vh	branches of a network and also voltage, drops
Calls	accross different branches in a network. Then can
	be started in the flowing way.
	The algebric sum of the current meeting
2	at any node (point con junction) in an electrical
	circuit is zero. Mathematically, this law can be
0	expressed as $\varepsilon x = 0$
	The sum of the currents flowing town-
Ċ	-rds a node is equal to the sum of the
, ·	currents out of the node mathematically, this
-	law can be expressed as &
	: According to kirchoff's current law
R	$T_1 + T_5 + T_6 = T_2 - T_3 - T_4 = 0$ (08)
	$\mathcal{I}_1 + \mathcal{I}_5 + \mathcal{I}_6 = \mathcal{I}_1 + \mathcal{I}_3 + \mathcal{I}_4 = 0$
1	2. Kirchoff's Voltage law (KVL) (or) Mesh law:- If any closed circuit. The algebric sum of
1	the products of the current of the resistance
!	in each point of the circuit is equal to the
	total emf in the circuit t. this law can be
99	expressed as -ETR = 0
	(08)
	The algebric sum of the voltage drops around
In A. S. Linear Training and apply	

To verify kirchoff's voltage law (KVL) (pr) Mesh law:

silo			D accross the resistor			
	(v) volts	V _I	V ₂	The second secon		tont V3 + V4
1	1.08	0.02	0.04	0.80	0-16	1.08
2	13-110-1	0.02	0.04	0.35	0.15 H	1:02
3	1.10	0.02	0.04	0.81	0.17	
4					હતી ૄ0ે ! 7 ત	1-15
5	1.24					
6	1.28	0.03	0.05	0.95	0.20	1.28

- Hand Asset Cally Land to the first for

ist my cloud charait, the algebraic surrich

أب وعدا إوها وا الد والمسال الأ ورسط علم علم علم

at the sent state. It thought the state of the s

bruer squil equillor of in the shaple

Expt. No.	Name	Date.	Page No. 8
a +	eny closed loop of zero at all in	a network us	vill be equal.
11	ly this law can As the curren	to expressed thro	as Eu=0.
	iscuit. the sum	of the voltagin the loop.	je drops around
Py	rocedure:-	AL PRIVATE	
170	o verify kirchoffs	current laws	KCL):-
	Make the circuit A battery of em.	connection as	shown in tig.
186	esistance R, and	8, are to be	connected
->	Connect another or R, and R3, then the		
->	Switch on the segulate	ed power supply	and set the
<u> </u>	Measure the current e resistors. R. R. O	I. Iz and Is	sassing through
	eter.)
	Find the sum of the		
-gh	R, and R, which	should be equ	ual to II.
Cove	The value 1, +13 or	be verified.	- Then RIVENUMS
12	Repeat above procedu	re by applying	various voltages
-10	Repeat above procedus the T-Abtwork for	the same val	ves of R for.
	R2, R3 and Ry.	E Commence Consider	
\rightarrow	alote down the of	servations in =	the table

Expt. N	No. Name	Date. Page No. 9
	To verity kirchoff's voltage of make the circuit connection the three resistances on the power supply digital multimeter. The value of the p.p. Voltage (v) the kirchoff's voltage (v) the kirchoff's voltages to the circuit for	s as shown in fig. S. R., R. and R.; ply and set applied (V, +V, +V3+V4) +V4) is equal the applied Lage law is said to be
	-> Note down the observation	is in the table.
	well with a sand paper. 2. The connection should be	
	Result:- 1. As the current flowing to equal to the sum of the cultivate in circuit.	
	2. As the algebric sum of the is equal to the total e.m.f Kirchoff's voltage law	P.Din the closed circuit. (KVL) is verified.

FIGURE OF MERIT OF A MOVING COIL GALVANOMETRE

. No. 3	Name	- to time	Date. 5/11./20)21 Page No. 10
Air	n:- To detern	nine the fig.	ure of a movir	ig coil gal
2	Salatary C	· All All	within the of the	E. telop.
Apr	jazatus: - movi	na coil galva	nometre: (Ballist	ic galvanor
13 Pre	or spot gal	vanametre) tw	nometre: Ballist	ces boxes.
lac	u resistance	box [1-to 1	on) battery, pi	lug-key, Coi
10	tox and con	necting wires	· er	J 4
100	The last minor	For most should	hal (ball)	
Foot	mula:- n	- i/o micro	amp/m·m	7600
	C. T. D. S. B. P. C. S. P. S.	Ou and sufficient and	THE REAL PROPERTY.	
Wh	ere, n = figur	re of ment 1	the galvanor	metre.
11=	Current pass	sing through	the galvanom	etre
90.0	mye Million	Marketin Se	d + 2 0001	scale The and
-	H stage 1/2 th	Ep × 106	The standard on	pop g
) = [Ep × 10 ⁶ P+Q) (R+G) mic	ero - amp	Obli
)90 G	= E.M.F of	the battery	(1-6 volts)	Liddings #
P.0	.R = Resistar	nce	Marine Control	A
7.0			anometre (to b	e determin
by		tion method)	a and closes—th	e vipa utili
0 =	deflection	of the galva	nometre.	mineral to
. 9/2	and the second	Leave on	Sast continues	
Pro	cedure :- This	experiment is	to be performed	din two p
live	letermination	of the res	istance of the	galvanometr
by	half-deflecti	ion method a	xind	o que
iii) c	Vetermination	of the ligur	re of the men	t of the
	vanometre.	J		and the second
1	-003 Two 2	resistance boxe	s P and q are	to be conr
ام	es series wi	ith a battery	of E.M.F. Eve	ilts and pla
i	A STATE OF THE PARTY OF THE PAR	J		

ing signify lifespirit! I entire so ling i hjima og i sereji. De es raise the cheudy consertions as store in stip. and the state of the second control of the state of istiliza de la bro plaga e aga della consellable di LOUF AUT CONTRACT OF TO ARREST ENTERS es it that where at the representable good the applie P Molari (vi anolice - Lailieav welling so the city of the same velices of P. Es and Es. and sale of such a series of the series of t in the order of the converting of described the chore well with a soul paper. 1. The the convert effecting stended the rock is aguel to the cum of the moseris Hawking out of Hilliam at upon will 2-1/2 the objective sum of the Epia the duck in · Lours adi ni) was also ed at lours a while vollage this well is voiled

To determine the figure of merit of the galvanometre

R	esistano	e	deflec	tion		current =	figure of
P	P	R	left :	Right 02	$O = \frac{O_1 + O_2}{2}$	$i = \frac{eP \times 10^6}{(P+\varphi)(R+\varphi)}$ (micro amp)	m=1/0
5	9995	1000	9.2	9.3	9.25	0.666	16.0723
4	9996	1000	7-4	7.5	7-45	0.533	0.071
3	9997	1000	5-7	5-8	5-75	0-4	0.069
2	9998	1000	3.8	3.8	8.8	0-266	0.07
1	9999	1000	2-2	2.2	2.2	0.133	0.060

Mean value of n = 0.0684 amp/m.m.

To determine the resistance of the galvanometre:

Resi	stance	Resistance in	Runningen ai	G= R,-2R,
arlaman P	9	full deflection (R1)	The state of the s	
an 5 33	9995	100 O (9·2)	2200 (4.6)	200

	Expt. No. Name	Date.	Page No. 11
	key. K as shown in the fig	3.1 connert	axea material of
-	P to one of the terminals of	The comm	utator (, through
-	a resistance R, and other te	sminals of	P to the opposite
ŀ	- terminals of the commutator	Between -	the other two
	epposite terminals of the comp		
	E = Battery (1.6 v), K = Plu		g.
	P = law range resistance b		
_	R = Resistance box (5000.0)		
	6 = High range resistance.	box (10.000-1	2)
	C = Commutator	•	
	G = moving oil galvanome		, ,
	Before taking the observations	the loop an	d scale arrangme
	-nt should be made proper	y at given	L Below.
	Priliminary adjustments of	lamp and so	ale arrangement:
_	Place the lamp and scale	arrangemen-	t at a distance
1	of luxter from the mirror	of lamp on	loving coil galva-
	-nometre switch on the lamp	and close	the galvanometer
	key, thow the spot of light	moves on	the transparement
	scale Adjust the lamp and the incident light from the	bus to	reflected from Ita
	improve on to the scale and -	the centre	of the cross wires
	is the light spot coinside wir	th the con	tre of the scale
	(and the centre) i.e., the spo	tread zero	on the scale.
_			
_	1. To determine the resistance	e g of th	e galvanometre
	by half-deflection method:	In order to	determine the
		,	

→ MAHAVEER

Teacher's Signature

Teacher's Signature

✓ MAHAVEER

LCR CIRUIT - SERIES RESONANCE

Aim:- To study frequency response characterstice 1. C.R sexies resonance circuit and to determ resonance frequency and quality factor. Apparatus:- A singual Aquator (carillator for for operator) V.T. V.M (vaccum tube voltmetre) -meter condenser, an distance coil, a resist and connecting wires. Formula:- 1. Resonance frequency of the series resonant 1. I Resonance frequency of the series resonant 2. quality factor of the circuit is P = 1 VIC	unction amilli-
Apparatus: A singual Aquator (carillator for for operator) v.T. v.M (vaccum tube voltmetre) -meter condenser, an distance coil, a resist and connecting wires. Formula:- (Diheoxitical Formula:- 1. Resonance frequency of the series resonant is formula:- 211 VIC 2. Quality factor of the circuit is $\varphi = \frac{1}{R}$ VIC	unction amilli-
Apparatus:- A singual Aquator (cavillator for for operator) v.T. v.M (vaccum tube voltmetre) -meter condenser, an distance coil, a resist and connecting wires. Formula:- [Distriction formula:- 1. Resonance frequency of the series resonant is $fe = \frac{1}{2}$ $fe = \frac{1}{R}$ $fe = \frac{1}{R}$	unction amilli
Apparatus:- A singual Aquator (corillator for for for operator) v.T. v.M (vaccum tube voltmetre) -meter condenser, an distance coil, a resist and connecting wires. Formula:- (i) Theoritical Formula:- 1. Resonance frequency of the series resonant is for the series resonant. 2. quality factor of the circuit is $\varphi = \frac{1}{R} \text{ VIC}$	a milli
eperator) v.T. v.m (vaccum tube voltmetre) -meter condenser, an distance coil, a resist and connecting wires. Formula:- (i) Theoritical Formula:- 1. Resonance frequency of the series resonant is $-6 = -1$ 2. quality factor of the circuit is $p = -1$	amilli
eperator) v.T. v.M (vaccum tube voltmetre) -meter condenser, an distance coil, a resist and connecting wires. Formula:- (i) Theoritical Formula:- 1. Resonance frequency of the series resonant is $-6 = -1$ 2. quality factor of the circuit is $P = -1$	amilli
-meter condenser, an distance coil, a resist and connecting wires. Formula:- (i) Theoritical Formula:- 1. Resonance - frequency of the series resonant 1. Is -fo = 1 Hz. 211 VIC 2. Quality factor of the circuit is $Q = \frac{1}{R}$ VIC	
Example:- (i) Theoritical Formula:- 1. Resonance - frequency of the series resonant is -fo = 1 Hz. 211 Jzc 2. quality factor of the circuit is $\varphi = \frac{1}{R} JTC$	
Example:- (i) Theoritical Formula:- 1. Resonance - frequency of the series resonant is -fo = 1 Hz. 211 Jzc 2. quality factor of the circuit is $\varphi = \frac{1}{R} JTC$	
(i) Theoritical Formula:- 1. Resonance frequency of the series resonant 1. Is -6 = 1 Hz. 211 VIC 2. Quality factor of the circuit is Q = 1 TIC	
1. Resonance frequency of the series resonant 1. Is $f_0 = \frac{1}{211 \sqrt{2}C}$ 1. Puality factor of the circuit is $Q = \frac{1}{R} \sqrt{I/C}$	
1. Resonance frequency of the series resonant 1. Is $f_0 = \frac{1}{211 \sqrt{2}C}$ 1. Puality factor of the circuit is $Q = \frac{1}{R} \sqrt{I/C}$	1 3 -
2. Quality factor of the circuit is $Q = \frac{1}{R} \sqrt{I/C}$	circuit
2. quality factor of the circuit is $Q = \frac{1}{R} \sqrt{I/C}$	
P= I VIC	*
P= I VIC	
	1 4 4 4
hilhere R = resistance of the resistor (dg)	
1 = Inductance of the coil (henry) - 9.53 x10	.3
C = Capacitence of the roudeser (found) - 0.55	
The state of the s	***
(ii) Experimental Formula:	
1. Resonance frequency of the circuit of	Lynn
Fo = HZ (-from the graph)	
2. Bond width of the resonant circuit	
Af = (f2-f1) HZ (from the graph)	
where fi = lower holy power frequency.	
F2 = upper holy power traquency.	
→ MAHAVEER Teacher's Signature	

food RS prise and alabama ed ma Destruction long and reals and general should 2000 regional of service and frequency (F) in KH2

Street Co.	4 7 5 - 1 h- 1			-
15	Frequency	(HZ)	Current (mA)	Tall.
2017 2.11	a de delesa	scent on	2 - 257 Qu 22 La - 22 La V	_ 3 3 - 7
	200	granity.	41.2 1525 32	10013696
	300		1.8	
. 1. 190	400	ter front	120 102.2 1 1 12 10 1	oroil.
chiano.	(3/13/31/500	adah m	2.8	
14 2170	600	3mari	3.2	coina
	700			6.0
	800		4.2	
	900		4.8	mencai
	-1000		i a 5- 2 a 3: (a) i	D Ir ccal
inital.	2000	Nove M	h was 7.2 m - 33 m	15.34 5.
	2200		7-2	n 21
	2400		7.2	
	2600	ei khasi	7.2000	lau2 +
	2800		7.2	
	3000		7	
	4000	Last oak	12.300072.38	Det da
	5000	milit	33 _34' 6:4 334363	
XIC	6000		5.8 marin	10
	7000		5-2	
	8000		4.6	
	-9000	10 A 11	4.2	
	Lagra (0000)		3.8	

- Thought and and the time the

when the last the same of the

My company of company pages of the life

of the sesonanance. This will happen when the frequency

frequency of the circuit i.e. resonance occurs this

frequency of which the current reaches a peak

Calculation:-

From Graph:

$$f_1 = 1000$$
 $f_6 = 2400$
 $f_2 = 7300$

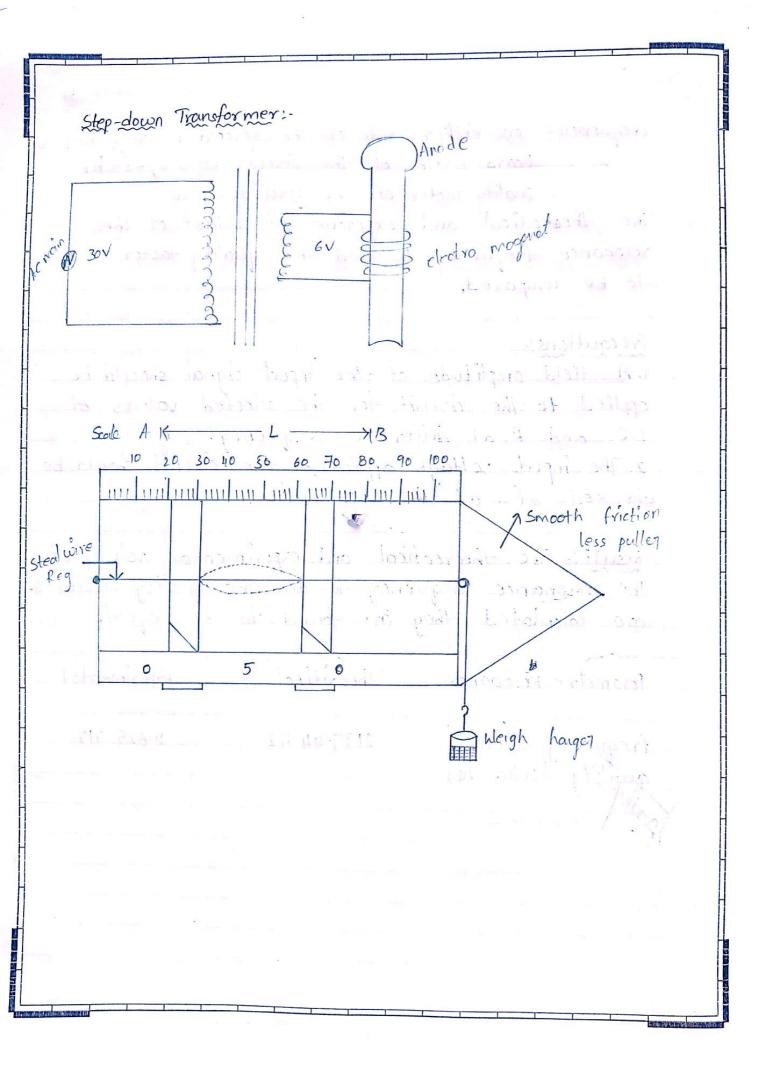
$$\frac{1}{100} = \frac{1}{1000} = \frac{7300 - 1000}{2400}$$

= 2.625 HZ.

Experimental:

=
$$2 \times 3.14 \sqrt{9.53 \times 10^{-3} \times 0.55 \times 10^{-6}}$$

Expt. No.	Name Date. Page No. 16
	value is called the resonance frequency to At the
	resonance frequency, the current is maximum and the
	independence is minimum, again increase the frequency
	of the input signal beyond the resonance frequency the
	the current through the circuit gradually decreases.
	Note the observations in table.
	Report the experiment by introducing different
	values of R in the circuit, for the same values of
	I an c, keeping the input voltage v. constant through
	out the experiment the thereotical values of the reson
	ance trequency, to and the quality factor a can be
	Calculated using the formulas.
	Carly Days a sumply with frequency of on the T-ON'S
	Graph: - Draw a graph with frequency of on the z-axis The current I on the Y-axis. A sharp resonance curves
	as an figure, will be obtained from the graph. Note
	the maximum current Io and the corresponding frequen
	at which the current is maximum. This frequency is
	called as resonance frequency to.
	To determine the both width (1) and qual
-	tactor o
	From the graph, find the values of To/J, 10
Y	(0.707/To) usark the value of 0.707/To on the y-axis
	from the value draw a line parallel to axis on x. Th
	line cuts the curve at two parts A,B called the hal
	power point from the point. A and B draw lines paral
	to y-axis, which needs the x-axis at two points correspond
	-nding to the frequency of and to call the half power


∠ MAHAVEER

Teacher's Signature

Expt. No.	Name	Date.	Page No. 17
		of the circuit A of the circuit, of experimental value	$f = (f_2 - f_1) H_2$ = fo es of the
	Precautions:- 1. A field amplitude of applied to the circuit 1. C and R at difference input voltage and the checked at all the checked at all the checked at the checked are calculated, they	rent trequency. rent trequency. applied to the circles, ral and experiment	values of rality factor of
1	Pevametre Resonance	Theoritical	Experimental
C/C/	frequency of (HZ) prality tactor (a)	2199-44-HZ	2.625 HZ
	✓ MAHAVEER	Teacher's Signature	

SONOMETRE FREQUENCY OF A.C SUPPLY

xpt. No. 5 Name	Date. 16-11-2021 Page No. 18
Aim: - To determine the	-frequency of the A-C supply using
at the set die with	A SECTION OF THE PARTY PROPERTY OF
Apparatus: A sonometre	a steel wire, an dectromagnet, a
	de slotted weights a stepdown
	ts) and a screw guage.
Formula: - f = n/2 H7	enegació e ten l'italia
inhere f = frequency of AC	a codu
	the vibrations of the wire
$n = \frac{1}{2l} \sqrt{\frac{1}{m}} H^2 = 60$	2Vm VL
Where T=mg	3 - 1 8 E - 1 E
	vibrating sigment of the steel wire
Where T= Tension applied	J V
m = mass suspend to the	
x = radius of the given	O O
f = density of the given	
Description: - A sonometre o	onsists of a ballow rectangular
wooden box's a beat para	cm 100g and 15 cm with two
	ge A and B with metallic edges
	face on the top of the box, A stee
	ction is stretched possible to the
	passes axes the two bridges A
V	rel wire is tastered to a pag. G
	g box and the other end of the
	smooth fiction less pulley Pana

Mass Tension Distance blw two knife edges Average of toesto the vesonancy of vesonancy as vesonancy $d_1^{11} d_2^{11} d_3^{11} $	Section Distance blw two knife edges Average the constant of resonancy at resonancy $\frac{1}{2}$ Average		and and and and and and	Control of the contro							
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ched $T = mg$ at resonancy $\frac{1}{1000} = \frac{1}{100}$ and $\frac{1}{100} = \frac{1}{100} = \frac{1}{100}$ and $\frac{1}{100} = \frac{1}{100} = \frac{1}{100}$ and $\frac{1}{100} = \frac{1}{100} = \frac{1}{100} = \frac{1}{100} = \frac{1}{100}$ and $\frac{1}{100} = \frac{1}{100} = \frac{1}$	Mass		3.51			nife æg	Sa	According	(a)	.[[
adines while decreosing while increosing $L = \frac{L + L_2}{2}$. 2940000 73 75 75 75 74 $1714.64 1714.64 1714.64 1714.64 1714.64 1714.64 1714.64 1714.64 1714.64 1714.66 1714.69 $	adines while decreosing while increasing $l = \frac{1142}{2}$ and $load = l_2$ (and $= l_1$ (and $= l_2$) (and $= l_2$) $load = l_2$ $load = load = l_2$ $load = load =$	aftatches	# 18 1 1 1	oias is		mancy		3 :	ا ا	L	-
2940000 73 2940000 68 1565.25 1960000 55 980000 1470000 50 980000 141 1410000 30 30 75 75 1711.64 1980000 1980000 1980000 1980000 19900000 19900000 199000000 199000000 $19900000000000000000000000000000000000$	2940000 73 75 75 74 1714.64 8 2440000 55 68 69 68.5 1565.25 1460000 50 55 57 1112.43 980000 490000 30 30 30 700	mgm	dines		sing	While	increasi	bu	-1	०० स स्थादि	>
2440000 73 75 75 74 1714.64 2 2450000 68 68 69 68.5 1565.25 1960000 55 51.5 1400 1470000 50 53 51.5 1212.43 2 980000 43 44 43 989.94	2940000 73 75 75 75 76 74 1714.64 2 2450000 68 69 69 68.5 1565.25 1960000 55 59 57 1400 1470000 50 50 53 51.5 1212.43 980000 43 44 44 43 989.94 190000 30 30 750	ello	4.4	load		9	ad = 12	714	3.40		1 - 1 - 2
2450000 68 68 69 68 68-5 1565.25 196000 55 1960000 55 1112.43 2 1112.43 2 190000 80 80 90000 80 90000 80 900000 80 9000000 80 900000000	2450000 68 68 69 68-5 1565 .25 1960000 55 1960 .25 1960 .25 1960000	e de la la	2940000	# # # # # # # # # # # # # # # # # # # #	-x-(-to	mengis.	75	· 2000	赤	1714.64	23.176
1960000 55 1470000 50 53 51.5 1212.43 2 980000 43 44 43 989.94	1960000 55 1470000 60 980000 43 444 43 989.944 140000 30 30 700		2450000		1 4 7 1	(1)/0	69	D& 14 		1565 .25	22.850
1470000 50 51.5 1212.43 2 8890.94 490000 80 80 50 50 50 50 50 50 50 50 50 50 50 50 50	980000 43 44 43 989.94 489 989.94 490000 30 30 700	2000	0000961	22	1.4 - 3-1 1.4 - 3-1	V F., -3	26	941-		e elle	. 56/
980000 43 44 43 489.94 490000 30 30 700 50 50 50 50 50 50 50 50 50 50 50 50 5	980000 443 444 443 9899.944 490000 30 760	0051	1470000	90			53	to en	5		23.542
490000 30 700 700 700 700 700 700 700 700	490000 30 700 700 700 700 700 700 700 700	000	980000	43	le rap	i i i i i i i i i i i i i i i i i i i	114	13-14-3-	100 E		tyt 66
30 760	30 760	200	00000	30			<u></u>		(2		
			}		alini.		20	Arga	60 m	700	23.333

carries a weight barger we by placing a suitable load an the weight hanger tension can be produced in the wire. A meter scale is fixed parrallel to the length of the box at the top to measure the length of the vibration segment of the wire between the measuring bridges mouls are provided are side of the box through which the energy of vibration is communicated to the external air which interifies the sound of not product on the top of the box. A cylindrical electromagnet which is supported by measure a report stand is kept perpendicular to the length of the steel wire. The AC supply mains whose frequency is to be determine is connected in the primary of the stepdown transformer of 230 volts and secondary is connected to electromagnet.

Principal:- When as alternating current of low voltage, passing through an electromagnet is kept vertically the sono metre wire stretched boder a constant tension then it gets magnetised during each cycle of the i.e., the end of the electromagnet falling the wire altequally becomes a worth pole and a south pole. Then the wire is altracted and pulled and their in each cycle of the A.C if the distance between the two bridges of the sonometre wire is so adjusted that the natural frequency of vibration of the wire becomes equal to double the frequency of A.C supply. The resonance accurry and the wire is thrown rate resonance vibrations i.e., the wire vibrating with minimum which appearly in the force of a loop of the resonance position the frequency

To determine the radius of the wire using screw Guage: L.C = 0.01 and I would be not not in the son as moduled

Error: -9 - correction: +9

			a+n.(L.c)
(a) mm	observed	Correction	mm
70.3	The second secon		o-Al
0.1	Jan 30	39	0.39
a o parago	29 100 miles	38	0.38

the this heliger or the investor which and and

course to the life or content of the tracelles the master

poisson apollos of la beautiful solids
$$\sigma = D/2 = 0.196$$
 and $\sigma = 0.0196$ and $\sigma = 0.0196$

of the AC supply f=n/2

Procedure: Take a steel of uniform cross-section a resonance the lock's if any streter the steel wire on the wedge shaped bridge A and B by placing a suitable box d in the weigth hanger so that the wire is within the elastic limit, support the electromagnet by means of a retort stand and keep in the near the middle of the wire arrange the bridges so the the wives at equal distances on either side of the electromagnet cannot the primary coil of the stepdown transformer to the AC mains and the secondary of the electromagnet as shown in figure first keep the two bridges A and B at swall distances on both sides of the middle of the wire switch on the AC mains and gradually move the bridges. At a particular length onwards the wire begins to vibrate with a swall amplitude finally at one position on wire vibration with maximum amplitudes which appears in the A and B that will happen when resonance occurs i.e. when the natural frequency (n) of the vibrating segment of the wire segment of this wire between the two bridges A and B. The exact resonance position can be easily identified by the placing v-shaped light, paper rides on the fluterly violated and is thrown off from the wire

Repeat the experiment by increasing the load in equal steps of 500 gm on the weight hanger upto the elastic limit of the wire and in each case the corresponding length I of the vibrating segment of the tabular the observations in the table, Now decrease the load in

Calculation: -

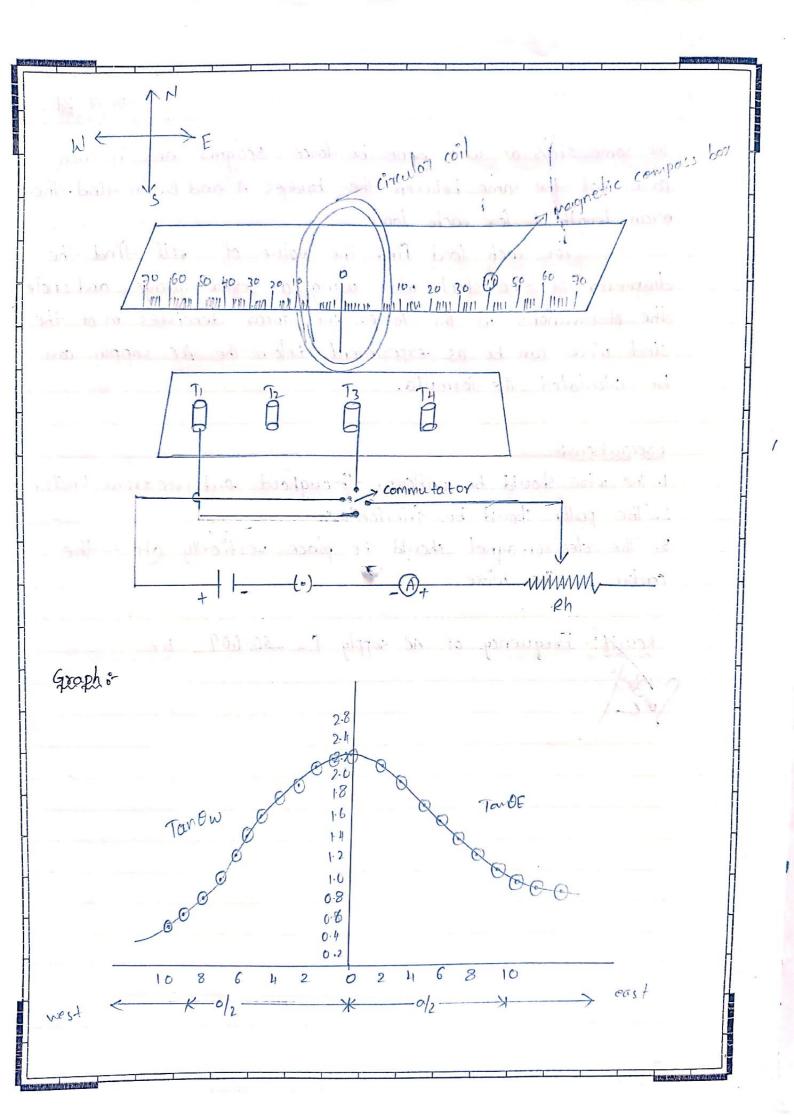
$$f = n/2$$

$$\eta = \frac{1}{2\sqrt{m}} \cdot \sqrt{\frac{T}{\ell}}$$

$$m = (3.14) (0.0196)^2 (7.85)$$

$$\sqrt{m} = 0.0973$$

$$n = \frac{1}{2\sqrt{m}} \times \sqrt{\frac{T}{l}}$$


$$n = 120.018$$

$$f = n/2$$

Expt. No.	Name	Date. Page No. 21
	the same stops as was don	e be force 500 gms and in each
	mean length I for each le	the bridges A and B. in find the
	For each load fi diameter of the steel wi the observations in the to	nd the value of III find the re using a screw guage and note uble. The linear dencities m of the eximent below the AC supply can
	Precautions:- 1. The wive should be unifor	m throughout and free from knots.
	2. The pully should be frie	
	Result: - Frequency of AC	supply 1 = 60.009 HZ
	orde	A the most mannel to the
		Lind and Asia man to consider
	to the same of the same	Livelida Enchara - Alexandra - Maria -
	marine to a solution	
	✓ MAHAVEER	Teacher's Signature

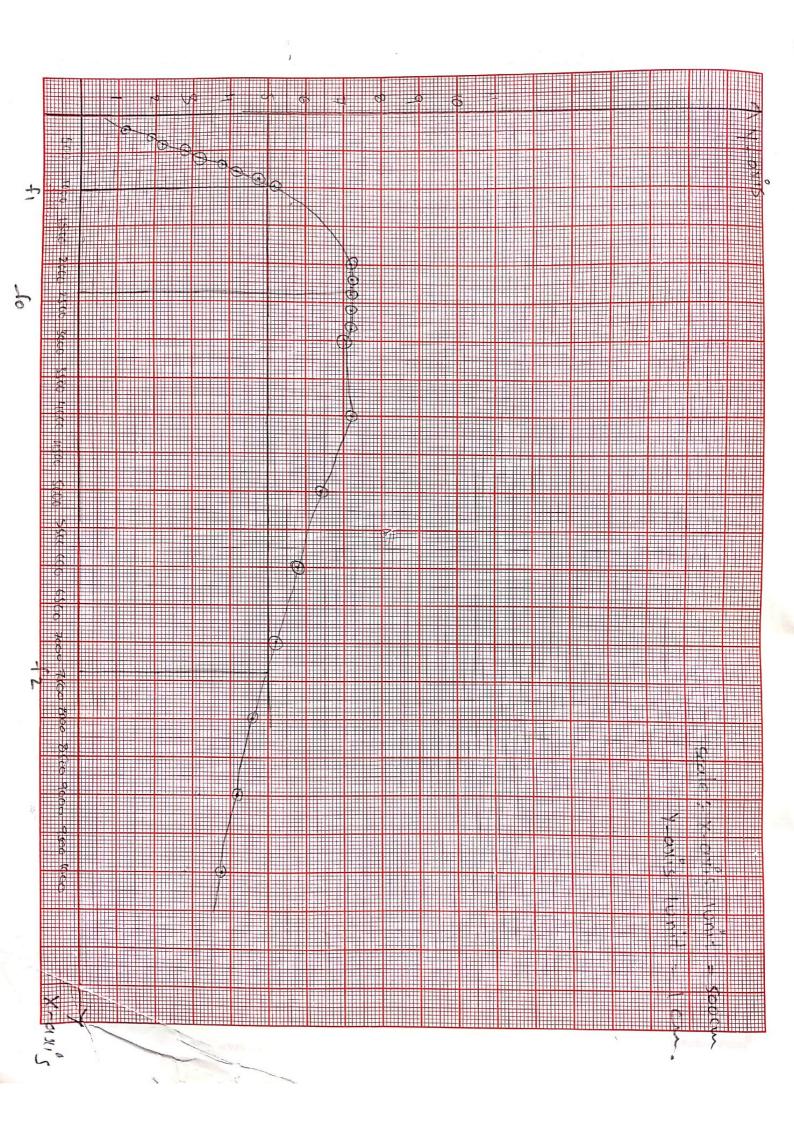
STEWARD AND GEE'S GALVANOMETRE

Expt. No.	6 Name Date. 16 11 2021 Page No. 22
3	Aim: - To study the verification of the intensity of field along the axis of a circular coil carring current using
3	steward and Gee's gortro type of langert galvanometre.
	Apparatus: - steuard and gee's type of langent galvanomet
3	Apparatus: - steuard and gee's type of tangent galvanometo battery, commutator, ammeter to to so) plug key and connecting wire.
No.	$\frac{4 + 2\pi n_1 a^2}{10(x^2 + a^2)^{3/2}}$
	in B : 1 of the smaller field of a point or
1.00	the axis of circular coil carring current.
Cve	n = number of turns of the coil.
	i = current flowing to the coil.
	a = radius of the coil
no.	r = distance of magnetic needle from the coil towar
	to tangent law
	H = Hoxizontal component of the earth magnetic field
	0 = Average angle of deflection when magnetic need!
	$(O_c + O_w)/2$
	Oc - Average angle of deflection when the magnetic compass
	box is placed on the east of the coil.
-	tw = Average angle of deflection when the magnetic compass
	box is placed on the west of the coil.
	Procedure: To set the circular cail in magnetic meridiar
	(Tax A Position):- level the wooden have B so that it is
	perfectly horizontal by means of the leveling screws Li and
	Teacher's Signature

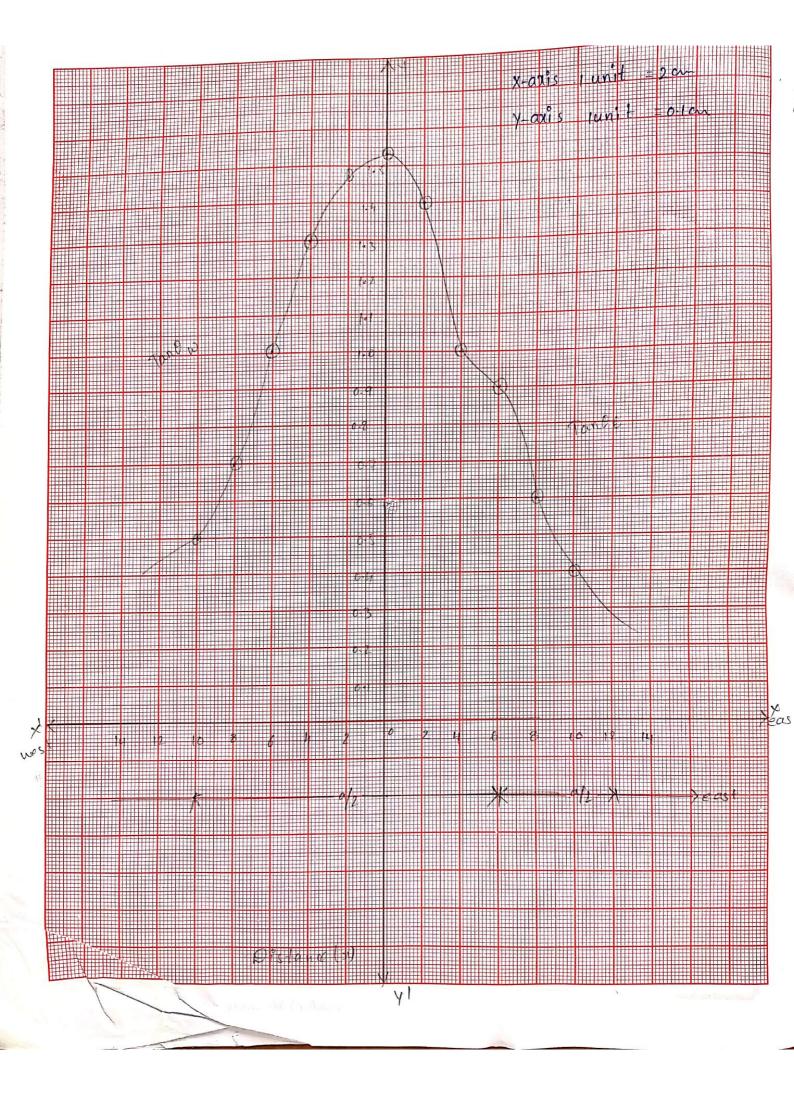
		1							
Position of	Position of Distance of	Bellection	jó	the magnetic	needle		ensie uate	H = 0.38	L
	needle from	East of	East of the coil	West of	West of the coil-	Mean	Tano	8 = H - Lan B	8= 211ma (0(x+0x))
tangent	the current of the coil (a)	4	7737	93	å.	0	Poplar s	est of	i iliyi
	0	52	52	29	(1) 2 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	57	1.539	485.0	£819.0
i la	2	49	6 H	63	9.00	95	1.482	0.563	0419.0
17-1	4	¥		99	9	57-5	1.303	8-495	0.5830
ani a r	9	38	36	58	28	44	1.072	994.0	0.5125
ri ri	00	76	26	-2/1 8 7 101	8h	37	6-753	6.286	6.4153
, i j	10	14	<u> </u>	43	43	36	4550	0-219	0.3/62
din,	8	± + +	22. # 7	7 49	100 de 10	Sp. 5	1944	0.532	0.6140
	4	39	39	24 10 10 10 10 10 10 10 10 10 10 10 10 10	10.05 c	64	1.072	904.0	6.5330
i 6: plin	9	32	20%	75	5.5	45	0.900	0.342	0.5127
	80	22	. 22	.94	94	34	749.0	0.256	6.4153
	40	21	5]	00	38	25.5	6.476	6.186	0.3167

City and the second second

12. Place the magnetic compass box on the sliding plate from Pand keep it at the centre of the coil in the obsence external magnetic field. The vertical plane of the circular coil mud be along the magnetic mexidian. When current is passed through the circular coil, the resultant magnetic field will be along the oxis of the coil of the circular coil the following procedure be adopted. Rolate the wooden base B in the horizontal place within the areas of the base are parallel to the aluminium pointer in the magnetic compass box and the magnetic needle is parallel to the vertical place of the circular coil in this position, the coil magnetic needle and its image all the vertical place, alluminium pointer a=0 on both sides of the circular scale of the deflection magnetometre To determine the angle of deflection B. of the magnetic needle: - connect the terminals T, and Tz (a=50) to the turns opposite terminals of a commutator. A battery B, shoostart B, ammeter A and plug key k to be connected in sexies in the other tures opposite terminals at the commutator close the key k, As the current flow through the coil it behaves as a magnetic with north pole on face and south pole on other face adjust the sheastart till the alluminium pointer shows a deflections o, and or adjust the ends of the aluminium pointer on the circular scale and kept deflection or and on. If the mean deflections of the aluminium pointer before and after seversing the directions of the current one equal it the vertical plane of the magnetic meridian.


$$0 \rightarrow = \frac{2 \times 3.14 \times 50 \times 0.2 \times 103.02}{10(0+103.02)^{3}/2}$$

$$-0.5127$$


MAHAVEER

Teacher's Signature

kpt. No.	Name	Date.	Page No. 25
	Observations:-		
	Number of twons in t	he coil n=50	
	current flowing through		
	Rodius of the coil a=		
	Hosizontal component of	corth's magnetic fi	reld H = 0.38 ocryf
	Precautions:		
	1. Deflection should be k	ept away from the	coated without
	paxallel between the al		
	2. The place of the coil		
	mendian properly otheru	sise the magnetic.	needle obes not
	lobey the dangent law.	The Real	
			A 1 (
	Result: The value of HTG	and and $2\pi nia^2$ $10(x^2+a^2)^{3/2}$	are calculate
	and compared. They are	found to be equal.	
	James 1		
	1		
	1		
	1		
			1
	→ MAHAVEER	Teacher's Signature	1,108110

xpt. No.		Name.	eries Resona	Date.	Page No.
			T		
1	f, =	1000			
	-fo =	2400	/3.3%		
- I	- 1 2	7300		7	
	O-fac	= 12-11	7200 100	2	
i			7300 - 1001	2	
, I 1		40	= 2-625 Ht		20
/ :			2		
		Harton	- 6	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
		or <			
1					
!				· ·	
i			*		
! !					
1		,			
i			-		
! !					
 			2-8		
1					
1 1					
i					
			9		
1 1					
I I				i .	
Į.					
1					

xpt. No.	Name.	Date.	Page No.
1	Position of the tangent	Distance of magnetic	
	the tangent	Distance of magnetic needle form the	lano
		centre of the coil (2)	
- 1			
i		0	1.539
	talest	2	1.482
		4	1-303
1		6	1.072
1		8	0. 753
- 1	,	10	0.577
i		2	1. 401
		4 ~	1.072
<u>i</u>	Fast	6	0-900
		8	0.674
		(0	0.476
	Carlot Carlot		The state of the s
	, 7		
i			
1			
1 1			
1			
1	1		