DEPARTMENT OF ELECTRONICS

COURSE OUTCOMES

BASIC CIRCUIT THEORY

SEMESTER - I

CO#	Course Outcome
CO1	Study basic circuit concepts in a systematic manner suitable for analysis and design.
CO2	Understand transient analysis.
CO3	Determine AC steady state response.
CO4	Analyze the electric circuit using network theorems.
CO5	Understand the two-port network parameters.

SEMESTER - II

ELECTRONIC DEVICES & CIRCUITS

CO#	Course Outcome
CO1	Describe the behavior of semiconductor materials.
CO2	Illustrate about rectifiers, transistor and FET amplifiers and its biasing. Also compare the Performances of its low frequency models.
CO3	Describe the frequency response of MOSFET and BJT amplifiers.
CO4	Explain the behavior and characteristics of power devices such as UJT.

SEMESTER - III

ANALOG ELECTRONICS & DIGITAL PRINCIPLES

CO#	Course Outcome
CO1	Explain the concepts of feedback and construct feedback amplifiers and oscillators.
CO2	Summarizes the performance parameters of amplifiers with and without feedback.
CO3	Perform analysis of two stage R -C coupled Amplifier
CO4	Understand Op - Amp basics and its various applications.
CO5	Become familiar with number systems and codes, Logic Gates.

SEMESTER - IV

DIGITAL ELECTRONICS & DIGITAL IC APPLICATIONS

CO#	Course Outcome
CO1	Become familiar with Boolean Algebra Theorems.
CO2	Summarizes the performance parameters of amplifiers with and without feedback.
CO3	Understand the minimization techniques for designing a simplified logic circuit.
CO4	Design a half Adder, Full Adder, HalfSubtractor, Full-Subtractor.
CO5	Understand the working of Data processing circuits Multiplexers, Demultiplexers, Decoders, Encoders.
CO6	Become familiar with the working of flip -flop circuits, its working and applications.

SEMESTER - V

MICROPROCESSOR PROGRAMMING & APPLICATIONS

CO#	Course Outcome
CO1	Understand the basic blocks of microcomputers i.e. CPU, Memory, I/O and architecture of microprocessor 8085.
CO2	Apply knowledge and demonstrate proficiency of designing hardware interfaces for memory and I/O as well as write assembly language programs for target microprocessor 8085.
CO3	Derive specifications of a system based on the requirements of the application and select the appropriate Microprocessor

SEMESTER - V

ELECTRONICS COMMUNICATION SYSTEMS

CO#	Course Outcome
CO1	Understand the basic concept of a communication system and need for modulation.
CO2	Evaluate modulated signals in time and frequency domain for various continuous modulation techniques.
CO3	Describe working of transmitters and receivers and effect of noise on a communication system.
CO4	Understand the basics of a digital communication system.
CO5	Understand the basics of an optical communication system.
CO6	Understand the working of satellite communication.
CO7	Understand the working of a cellular communication system.

SEMESTER - VI

MICROCONTROLLERS & INTERFACING

CO#	Course Outcome
CO1	Understand the architecture of a 8051 microcontroller.
CO ₂	Write simple programs for 8051 microcontroller.
CO3	Understand key concepts of 8051 microcontroller systems like I/O operations, interrupts, programming of timers and counters.
CO4	Interface 8051 microcontroller with peripherals.
CO5	In the laboratory, students will program 8051 microcontroller to perform various experiments.

SEMESTER - VI

EMBEDDED SYSTEMS DESIGN

CO#	Course Outcome
CO1	Understand the concepts related to embedded systems and architecture of microcontrollers.
CO2	Familiarize with serial bus standards.
CO3	Design systems for common applications like general I/O, counters, PWM motor control, data acquisition etc.
CO4	Familiarize with the programming environments used in robotics applications.
CO5	Understand the working of sensors, actuators and other components used in design and Implementation of robotics.

SEMESTER - VI

CONSUMERS ELECTRONICS

CO#	Course Outcome
CO1	Familiarization with various types of audio systems.
CO2	Familiarization with TV and video systems.
CO3	Familiarization with telephony and office equipment.
CO4	Familiarization with various domestic gadgets/appliances

SEMESTER - VI

POWER ELECTRONICS

CO#	Course Outcome
CO1	Explain the basic principles of switch mode power conversion, models of different types of power electronic converters including dc-dc converters, PWM rectifiers and inverters.
CO2	Choose appropriate power converter topologies and design the power stage and feedback controllers for various applications. They use power electronic simulation packages for analyzing and designing power converters
CO3	Describe the operation of electric machines, such as motors and their electronic controls.
CO4	Analyze the performance of electric machine.