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Abstract: The aim of this paper is to introduce the notions of L-fuzzy   sub l-rings, L-fuzzy convex sub l-
rings, L-fuzzy prime convex sub l-rings, L-fuzzy prime convex sub l-rings, L-fuzzy l-ideals of l-ring with 
values in a complete lattice which is infinite meet distributive and investigate some properties. 
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Introduction: Ever since L.A.Zadeh introduced the notion of fuzzy sets, the theory of fuzzy sets has 
attracted several researchers in the areas of Mathematics, Computer Science, Engineering and 
Technology. J.A.Goguen initiated a more abstract study of fuzzy sets by replacing the values set [0,1] by a 
complete lattice in an attempt to make a generalized study of fuzzy set theory by studying L-fuzzy sets. 
Most of the authors considered fuzzy subsets taking values in a complete lattice. Fuzzy algebra is now a 
well developed part of algebra. Partially ordered algebraic systems play an important role in algebra. 
Especially l-groups, l-rings, Vector lattices and f-rings are important concepts in algebra which present 
an abstract study of rings of continuous functions. In [13], we introduced L-fuzzy sub l-groups and L-
fuzzy l-ideals. In [14] we introduced Fuzzy Convex sub l-groups and in , [15] we studied L-fuzzy prime 
spectrum of l-groups. The objective of this paper is to study L-fuzzy convex sub l-rings which assume 
values in a complete lattice which satisfies infinite meet distributive law. 
 
In this paper, we introduce the concepts of L-fuzzy convex sub l-rings, -fuzzy prime convex sub l-rings 
and L-fuzzy maximal convex sub l-rings, L-fuzzy l-ideals of l-rings. 
 

Throughout this paper, let R ¹ 0 be an l-ring and L stands for a nontrivial complete lattice in which the 

infinite meet distributive law, Ù Ú Ú Ù for any S Í L and a Î L holds. Throughout the 
paper we consider meet irreducible elements of L only. 
 
1. Preliminaries: 
Definition 1.1 : A lattice ordered group is a system where 
(i) (R,+) is an abelian group,  

(ii) (R, £ ) is a lattice. 
 

Definition 1.2:  An L-Fuzzy subset l of X is a mapping from X into L, where L is a complete lattice 
satisfying the infinite meet distributive law. If L is the unit interval [0,1] of real numbers, there are the 

usual fuzzy subsets of X. A L-fuzzy subset l : G → L is said to be a nonempty, if it is not the constant 
map which assumes the values 0 of L. 
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Definition 1.3: Let l : X → L be a L-fuzzy subset of X. Then the set  

{l(x) / x Î X} is called the image of l and is denoted by l(x) or Im(l). The set 

{ x / x Î X, l(x) > 0 } is called the support of l and is denotd by Supp(l). The set l Î l

l . For t Î L, l Î l  is called a t-cut or t-level set of l. 
 

Definition 1.4:  Let l, m be two L-fuzzy subsets of X. If l(x) £ m(x) for all  

x Î X, then we say that l is contained in m and we write l Í m. Define l È m and  l Ç m are L-fuzzy 

subsets of X by for all x Î X, (l È m)(x)= l(x) Ú m(x),  

(l Ç m) = l(x) Ù m(x). Then l È m and l Ç m are called the union and intersection of l and m, 
respectively. 
 

Definition 1.5:  Let f be  a mapping from X into Y, and let l and m be L-fuzzy subsets of X and Y 

respectively. The L-fuzzy subsets f(l) of Y and m  of X, defined by 

l
Ú l

 

Where y Î Y, and m m , for all x Î X, are called the image of l under f and the pre-image 

of m under f, respectively. 
 

Definition 1.6: A L-fuzzy subset l of X is said to have sup property  if, for any subset A of X, there exists 

a0 Î A such that l Ú l . 
 

Definition 1.7: Let f be any function from a set X to a set Y, and let l be any L-fuzzy subset of X. Then l 

is called f-invariant if f(x)=f(y) implies l(x)=l(y), where x,yÎX. 
 

Definition 1.8: Let X be nonempty set. Let Y Í X and a Î Y. We define, a L-fuzzy set aY is defined as 
follows: 

 

In particular, if Y is a singleton, say, {y}, then ay is called as L-fuzzy point. Let R = (R, +, .) be a ring with 
0 as the additive identity in R. 
 

Definition 1.9: A L-fuzzy subset l of R is said to be a L-fuzzy subring of R, if 

i) l(x - y) ³ l(x) Ù l(y) 

ii) l(xy) ³ l(x) Ù l(y), for all x,y Î R. 
 

Definition 1.10 : A L-fuzzy subset l of R is said to be a L-fuzzy ideal of R, if  

i) l(x - y) ³ l(x) Ù l(y) 

ii) l(xy) ³ l(x) Ù l(y), for all x,y Î R. 
 

2. L-Fuzzy sub l-rings: In this section we introduce the concept of L-fuzzy sub l-rings. Here after L 
stands for a nontrivial complete lattice in which the infinite meet distributive law, Ù Ú

Ú Ù  for any S Í L and a Î L holds. 

Let R = (R, +, Ú, Ù) be an l-ring with 0 as the additive identity in R. 
 

Definition 2.1: A L-fuzzy subset l of R is said to be a L-fuzzy sub l-ring of R, if 

i) l(x - y) ³ l(x) Ù l(y) 

ii) l(xy) ³ l(x) Ù l(y) 

iii) l( x Ú y) ³ l(x) Ù l (y) 

iv) l( x Ù y) ³ l(x) Ù l (y) for all x,yÎ R. 
 

Theorem 2.2: Let l be a fuzzy subset of an l-ring R. l is a L-fuzzy sub l-group of R if and only if l(x - y) ³ 

l(x) Ù l(y), l(xy) ³ l(x) Ù l(y) and 
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 l( x Ù y) Ù l( x Ú y) ³ l(x) Ù l (y), for all x,y Î G. 
 

Theorem 2.3: A L-fuzzy subset l of an l-ring R is a L-fuzzy sub l-ring of R if and only if lt is a sub l-ring 

of R for all t Î l (G) È {t Î L / l(0) ³ t}. 
 

Theorem 2.4 : If l is a L-fuzzy sub l-ring of R, then Supp(l) is a l-sub ring of R, if Supp (l) ¹f and  L is 

regular. (i.e., if a ¹ 0, b¹0 Þ a Ù b ¹ 0 where a, b Î L). 
 

Theorem 2.5: If A is any l-sub ring of R, A ¹ G, then the L-fuzzy subset l of R defined by  

l
Ï

 

 

where s, t Î L and t < s ¹ 0, is a L-fuzzy sub l-ring of R. 
 

Theorem 2.6: Let l be a L-fuzzy sub l-ring of an l-ring R. Then 
 l Î l l  is an l-subring of R. 
 

Definition 2.7: Let l be a L-fuzzy subset of an l-ring of R. Let l Ç | l Í

. Then l  is called the L-fuzzy sub l-ring of R generated by l. Clearly l  is the smallest L-

fuzzy sub l-ring of R which contains l. 
 

Theorem 2.8: Let R and R1 be two l-rings. Let l and m are two L-fuzzy sub l-rings of R and R1 
respectively. If f : R → R1 be a homomorphism and onto then 

(i) f(l) is a L-fuzzy sub l-ring of R1, provided that l has sup property, 

(ii) f-1(m) is a L-fuzzy sub l-ring of R, 

(iii) (f(l))(01) = l (0), where 01 Î R1 and 0 Î R, 

(iv) f(Gl) Í R
1
f(l), 

(v) If l is constant on Ker f, then (f(l))(f(x)) = l (x), for all x Î R, 

(vi) . 

 As an immediate consequence, if l is  constant on Ker f, it is easy to observe that  

i)f-1(f(l)) = l and  ii) f(f-1(m)) = m. 
 
3. L-fuzzy convex sub l-rings 
 

Definition 3.1: A L-fuzzy sub l-ring l of R is said to be a L-fuzzy convex sub l-ring of R if  
                       Þl l  
 

Theorem 3.2: Let l be a L-fuzzy sub l-ring of R. Then, l is a L-fuzzy convex sub l-group of R if and only 
if  implies l l l . 
 

Lemma 3.3: Let l be a L-fuzzy convex sub l-ring. Then,  implies   
l l . 
 

Theorem 3.4: A L-fuzzy sub l-ring l of a l-ring R is a L-fuzzy convex sub l-ring of R if and only if for each 

l-sub ring lt, l È |l  is a convex l-sub ring of R. (In fact, for each t Î L, lt is empty or 
a convex l-sub ring of R). 
 
Example 3.5: Let . Let  Where Z be the set of all integers. By ordering 
lexicographically  if and only if  and . 

Let + be usual addition and · be usual multiplication · Ú Ù  is an l-ring with above ordering. 
Define a L-fuzzy subset  , by  
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Clearly the level sets  if 

 are convex l- sub rings of R. Therefore , m is a L-fuzzy convex sub l-ring of l-ring R. 
 

Theorem 3.6:If l is a L-fuzzy convex sub l-ring of R, then l | l  is a convex l-sub 
group of R if l  and L is regular. 
 
Theorem 3.7 : The intersection of any non empty family of L-fuzzy convex sub l-rings of R is a L-fuzzy 
convex sub l-ring. 

Theorem3.8. If l is a L-fuzzy convex sub l-ring of R, then l |l l  is a convex l-subring 
of R. 
 

Theorem 3.9: If A is any convex sub l-subring  of R, then the L-fuzzy subset l of R defined by  

l
Ï

 

Where s,t ÎL and t < s, is a L-fuzzy convex sub l-ring of R. 
 

Theorem 3.10: Let R and R1 be two l-rings. Let l and m be L-fuzzy convex sub l-rings of R and R1 
respectively. If f: R → R

1
 be a epimorphism,  then  

(i) f(l) is a L-fuzzy convex sub l-ring of R1, provided that l is f- invariant. 

(ii) f-1(m) is a L-fuzzy convex sub l-ring of R. 
 

Theorem.3.11: Let f be a homomorphism of R onto R1. If l and m are L-fuzzy convex sub l-rings of R, 

then l m l m , provided that if at least one of l of m is f – invariant. 
 

Definition3.12: Let l be a L-fuzzy subset of an l-ring R. The smallest L-fuzzy convex sub l-ring of R 

which contains l is called the L-fuzzy convex sub l-ring of R, generated by l and is denoted by l . 
 

Theorem 3.13: Let m be a L-fuzzy subset of an l-ring R. Define n : R → L be a L-fuzzy subset as follows: 

n Ú Ù Î m | Í  

Where  denotes convex l-subring generated by A. Then n m , L-fuzzy convex sub l-ring generated 

by m. 
 

Definition3.14: Let l be a L-fuzzy subset of an l-ring R. Then l is called a L-fuzzy maximal convex sub l-

ring of r, if l is a maximal element in the set of all non constant L-fuzzy convex sub l-rings of R under 
point wise partial ordering. 
 

Theorem 3.15: Let l be a L-fuzzy subset of an l-ring R. Then l is a L-fuzzy maximal convex sub l-ring of 

R if and only if there exist, a maximal convex l-subring M of R and maximal element a in L such that  

l
a

 

 
Definition 3.16: A non constant L-fuzzy convex sub l-ring  of an l-ring R is called L-fuzzy prime convex 

sub l-ring if and only if for any –fuzzy convex sub l-rings m and n, m n Í lÞ either m Í l or n Í l. 
 

Lemma 3.17: If l is a L-fuzzy prime convex sub l-ring of R, then l(0) = 1. 
 



 
Mathematical Sciences International Research Journal Volume 8 Issue 2                       ISSN 2278- 8697 

  

 
IMRF Biannual Peer Reviewed (Refereed) International Journal | SE Impact Factor 2.73            |    123 
 

 

Theorem 3.18: Let l be a L –fuzzy subset of R. Then l is a L-fuzzy prime convex sub l-ring of R if and 

only if there exists a pair a  where P is a prime convex  l-sub ring and a is an irreducible element of 
L, such that 

l
a

 

Definition 3.19: A L-fuzzy sub l-ring l of R is said to be a L-fuzzy l-ideal of R, 

(i) if x, a Î R, Þl l  and 
(ii) l l Úl  
As above, we can define L-fuzzy prime ideals and L-fuzzy maximal ideals. 
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