FUZZY CONVEX SUB L-RINGS

Dr. G.S.V. Satya Saibaba

Head of the Department of Mathematics, Sri Y.N.College (A), Narsapur, W.G.Dt, A.P, India. Email: saibabagannavarapu65@yahoo.com

G Sridhar

Head of the Department of Mathematics, SVKP & Dr KS Raju Arts & Science College, Penugonda, W.G.Dt, A.P, India Email: sridharsvkp@gmail.com

Received: Sep. 2019 Accepted: Oct. 2019 Published: Nov. 2019

Abstract: The aim of this paper is to introduce the notions of L-fuzzy sub *l*-rings, L-fuzzy convex sub *l*-rings, L-fuzzy prime convex sub *l*-rings, L-fuzzy prime convex sub *l*-rings, L-fuzzy *l*-ideals of *l*-ring with values in a complete lattice which is infinite meet distributive and investigate some properties.

Keywords: L-fuzzy sub *l*-ring, -fuzzy convex sub *l*-rings, -fuzzy prime convex sub *l*-rings, L-fuzzy *l*-ideals.

Mathematics Subject Classification (2010): 06D72, 06F15, 08A72, 03E72, 18B35.

Introduction: Ever since L.A.Zadeh introduced the notion of fuzzy sets, the theory of fuzzy sets has attracted several researchers in the areas of Mathematics, Computer Science, Engineering and Technology. J.A.Goguen initiated a more abstract study of fuzzy sets by replacing the values set [0,1] by a complete lattice in an attempt to make a generalized study of fuzzy set theory by studying L-fuzzy sets. Most of the authors considered fuzzy subsets taking values in a complete lattice. Fuzzy algebra is now a well developed part of algebra. Partially ordered algebraic systems play an important role in algebra. Especially *l*-groups, *l*-rings, Vector lattices and f-rings are important concepts in algebra which present an abstract study of rings of continuous functions. In [13], we introduced L-fuzzy sub *l*-groups and L-fuzzy *l*-ideals. In [14] we introduced Fuzzy Convex sub *l*-groups and in , [15] we studied L-fuzzy prime spectrum of *l*-groups. The objective of this paper is to study L-fuzzy convex sub *l*-rings which assume values in a complete lattice which satisfies infinite meet distributive law.

In this paper, we introduce the concepts of L-fuzzy convex sub l-rings, -fuzzy prime convex sub l-rings and L-fuzzy maximal convex sub l-rings, L-fuzzy l-ideals of l-rings.

Throughout this paper, let $R \neq o$ be an l-ring and L stands for a nontrivial complete lattice in which the infinite meet distributive law, $a \land (\lor_{s \in S} s) = \lor_{s \in S} (a \land s)$ for any $S \subseteq L$ and $a \in L$ holds. Throughout the paper we consider meet irreducible elements of L only.

1. Preliminaries:

Definition 1.1 : A lattice ordered group is a system $R = (R. +, ., \leq)$ where

- (i) (R,+) is an abelian group,
- (ii) (R, \leq) is a lattice.

Definition 1.2: An L-Fuzzy subset λ of X is a mapping from X into L, where L is a complete lattice satisfying the infinite meet distributive law. If L is the unit interval [0,1] of real numbers, there are the usual fuzzy subsets of X. A L-fuzzy subset $\lambda: G \to L$ is said to be a nonempty, if it is not the constant map which assumes the values o of L.

Definition 1.3: Let $\lambda : X \to L$ be a L-fuzzy subset of X. Then the set

 $\{\lambda(x) \mid x \in X\}$ is called the image of λ and is denoted by $\lambda(x)$ or $Im(\lambda)$. The set

 $\{x \mid x \in X, \lambda(x) > o\}$ is called the support of λ and is denoted by $Supp(\lambda)$. The set $X_{\lambda} = \{x \in X \mid \lambda(x) = \lambda(0)\}$. For $t \in L$, $\lambda_t = \{x \in X \mid \lambda(x) \ge t\}$ is called a t-cut or t-level set of λ .

Definition 1.4: Let λ , μ be two L-fuzzy subsets of X. If $\lambda(x) \leq \mu(x)$ for all

 $x \in X$, then we say that λ is contained in μ and we write $\lambda \subseteq \mu$. Define $\lambda \cup \mu$ and $\lambda \cap \mu$ are L-fuzzy subsets of X by for all $x \in X$, $(\lambda \cup \mu)(x) = \lambda(x) \vee \mu(x)$,

 $(\lambda \cap \mu) = \lambda(x) \wedge \mu(x)$. Then $\lambda \cup \mu$ and $\lambda \cap \mu$ are called the union and intersection of λ and μ , respectively.

Definition 1.5: Let f be a mapping from X into Y, and let λ and μ be L-fuzzy subsets of X and Y respectively. The L-fuzzy subsets $f(\lambda)$ of Y and $f^{-1}(\mu)$ of X, defined by $f(\lambda)(y) = \begin{cases} \sqrt{\{\lambda(x)/x \in X, f(x) = y\}} & \text{if } f^{-1}(y) \neq \emptyset \\ 0 & \text{otherwise} \end{cases}$

Where $y \in Y$, and $f^{-1}(\mu)(x) = \mu(f(x))$, for all $x \in X$, are called the image of λ under f and the pre-image of μ under f, respectively.

Definition 1.6: A L-fuzzy subset λ of X is said to have sup property if, for any subset A of X, there exists $a_o \in A$ such that $\lambda(a_0) = \bigvee_{a \in A} \lambda(a)$.

Definition 1.7: Let f be any function from a set X to a set Y, and let λ be any L-fuzzy subset of X. Then λ is called f-invariant if f(x)=f(y) implies $\lambda(x)=\lambda(y)$, where $x,y\in X$.

Definition 1.8: Let X be nonempty set. Let $Y \subseteq X$ and $a \in Y$. We define, a L-fuzzy set a_Y is defined as follows:

$$a_Y(x) = \begin{cases} a & if \ x \ \in Y \\ 0 & if \ x \ \in X - Y \end{cases}$$

In particular, if Y is a singleton, say, $\{y\}$, then a_y is called as L-fuzzy point. Let R = (R, +, .) be a ring with o as the additive identity in R.

Definition 1.9: A L-fuzzy subset λ of R is said to be a L-fuzzy subring of R, if

- i) $\lambda(x-y) \ge \lambda(x) \wedge \lambda(y)$
- ii) $\lambda(xy) \ge \lambda(x) \wedge \lambda(y)$, for all $x,y \in R$.

Definition 1.10 : A L-fuzzy subset λ of R is said to be a L-fuzzy ideal of R, if

- i) $\lambda(x-y) \ge \lambda(x) \wedge \lambda(y)$
- ii) $\lambda(xy) \ge \lambda(x) \wedge \lambda(y)$, for all $x,y \in R$.
- **2. L-Fuzzy sub** *l*-rings: In this section we introduce the concept of L-fuzzy sub *l*-rings. Here after L stands for a nontrivial complete lattice in which the infinite meet distributive law, $a \land (\lor_{s \in S} s) = \lor_{s \in S} (a \land s)$ for any $S \subseteq L$ and $a \in L$ holds.

Let $R = (R, +, \vee, \wedge)$ be an *l*-ring with o as the additive identity in R.

Definition 2.1: A L-fuzzy subset λ of R is said to be a L-fuzzy sub *l*-ring of R, if

- i) $\lambda(x-y) \ge \lambda(x) \wedge \lambda(y)$
- ii) $\lambda(xy) \ge \lambda(x) \wedge \lambda(y)$
- iii) $\lambda(x \vee y) \ge \lambda(x) \wedge \lambda(y)$
- iv) $\lambda(x \wedge y) \ge \lambda(x) \wedge \lambda(y)$ for all $x,y \in R$.

Theorem 2.2: Let λ be a fuzzy subset of an l-ring R. λ is a L-fuzzy sub l-group of R if and only if $\lambda(x - y) \ge \lambda(x) \wedge \lambda(y)$, $\lambda(xy) \ge \lambda(x) \wedge \lambda(y)$ and

 $\lambda(x \wedge y) \wedge \lambda(x \vee y) \geq \lambda(x) \wedge \lambda(y)$, for all $x,y \in G$.

Theorem 2.3: A L-fuzzy subset λ of an l-ring R is a L-fuzzy sub l-ring of R if and only if λ_t is a sub l-ring of R for all $t \in \lambda$ (G) $\cup \{t \in L / \lambda(o) \ge t\}$.

Theorem 2.4: If λ is a L-fuzzy sub *l*-ring of R, then Supp(λ) is a *l*-sub ring of R, if Supp (λ) $\neq \emptyset$ and L is regular. (i.e., if $a \neq o$, $b\neq o \Rightarrow a \land b \neq o$ where $a, b \in L$).

Theorem 2.5: If A is any *l*-sub ring of R, $A \neq G$, then the L-fuzzy subset λ of R defined by $\lambda(x) = \begin{cases} s & \text{if } x \in A \\ t & \text{if } x \notin A, \end{cases}$

$$\lambda(x) = \begin{cases} s & \text{if } x \in A \\ t & \text{if } x \notin A. \end{cases}$$

where s, $t \in L$ and $t < s \neq o$, is a L-fuzzy sub *l*-ring of R.

Theorem 2.6: Let λ be a L-fuzzy sub l-ring of an l-ring R. Then $G_{\lambda} = \{x \in G / \lambda(x) = \lambda(0)\}\$ is an *l*-subring of R.

Definition 2.7: Let λ be a L-fuzzy subset of an l-ring of R. Let $\langle \lambda \rangle = \bigcap \{ \mu \mid \lambda \subseteq \mu, \mu \text{ is any } L - \text{fuzzy sub } l - \{ \mu \mid \lambda \subseteq \mu, \mu \text{ is any } L - \{ \mu \mid \lambda \in \mu, \mu \text{ is any } L - \{ \mu \mid \lambda \in \mu, \mu \text{ is an$ ring of R $\}$. Then $\langle \lambda \rangle$ is called the L-fuzzy sub l-ring of R generated by λ . Clearly $\langle \lambda \rangle$ is the smallest Lfuzzy sub *l*-ring of R which contains λ .

Theorem 2.8: Let R and R¹ be two *l*-rings. Let λ and μ are two L-fuzzy sub *l*-rings of R and R¹ respectively. If $f: R \to R^1$ be a homomorphism and onto then

- $f(\lambda)$ is a L-fuzzy sub *l*-ring of R¹, provided that λ has sup property, (i)
- (ii) f'(u) is a L-fuzzy sub *l*-ring of R,
- $(f(\lambda))(o^1) = \lambda$ (o), where $o^1 \in R^1$ and $o \in R$, (iii)
- $f(G_{\lambda}) \subseteq R^{1}_{f(\lambda)}$ (iv)
- If λ is constant on Ker f, then $(f(\lambda))(f(x)) = \lambda$ (x), for all $x \in R$, (v)
- $f^{-1}(R^1_{\mu}) = R_{f^{-1}(\mu)}.$ (vi)

As an immediate consequence, if λ is constant on Ker f, it is easy to observe that

i)
$$f'(f(\lambda)) = \lambda$$
 and ii) $f(f'(\mu)) = \mu$.

3. L-fuzzy convex sub *l*-rings

Definition 3.1: A L-fuzzy sub l-ring λ of R is said to be a L-fuzzy convex sub l-ring of R if x, $a \in G$, $0 \le x \le a \Rightarrow \lambda(x) \ge \lambda(a)$ (Convexity condition)

Theorem 3.2: Let λ be a L-fuzzy sub *l*-ring of R. Then, λ is a L-fuzzy convex sub *l*-group of R if and only if $0 \le x \le a$ implies $\lambda(0) \ge \lambda(x) \ge \lambda(a)$, for all $x, a \in R$.

Lemma 3.3: Let λ be a L-fuzzy convex sub *l*-ring. Then, $|x| \le |a|$ implies $\lambda(x) \ge \lambda(a)$, for $x, a \in R$.

Theorem 3.4: A L-fuzzy sub *l*-ring λ of a *l*-ring R is a L-fuzzy convex sub *l*-ring of R if and only if for each *l*-sub ring λ_t , $t \in \lambda(R) \cup \{t \in L \mid \lambda(a) \ge t\}$ is a convex *l*-sub ring of R. (In fact, for each $t \in L$, λ_t is empty or a convex *l*-sub ring of R).

Example 3.5: Let L = [0,1]. Let $R = Z \times Z$, Where Z be the set of all integers. By ordering lexicographically $(a, b) \ge (0, 0)$ if and only if a > 0 or a = 0 and $b \ge 0$.

Let + be usual addition and • be usual multiplication $(R, +, \bullet, \vee, \wedge)$ is an *l*-ring with above ordering. Define a L-fuzzy subset $\mu : G \to L$, by

$$\mu(x) = \begin{cases} 1, & \text{if } (x,y) \in \{(0,0)\} \\ 0.5 & \text{if } (x,y) \in (\{(0,0)\} \times Z) - \{(0,0)\} \\ 0.25, \text{ otherwise} \end{cases}$$

Clearly the level sets $\mu_t = \{(0,0)\}$, if $0.5 < t \le 1$, $\mu_t = \{(0,0) \times Z$, if $0.25 < t \le 0.5$ and $\mu_t = G$ for $0 \le t \le 1$. $\{0.25,\}$ are convex l- sub rings of R. Therefore, μ is a L-fuzzy convex sub l-ring of l-ring R.

Theorem 3.6: If λ is a L-fuzzy convex sub *l*-ring of R, then $\sup(\lambda) = \{x \in \mathbb{R} \mid \lambda(x) > 0\}$ is a convex *l*-sub group of R if Supp(λ) $\neq \emptyset$ and L is regular.

Theorem 3.7: The intersection of any non empty family of L-fuzzy convex sub *l*-rings of R is a L-fuzzy convex sub *l*-ring.

Theorem3.8. If λ is a L-fuzzy convex sub *l*-ring of R, then $R_{\lambda} = \{x \in R | \lambda(x) = \lambda(0)\}$ is a convex *l*-subring

Theorem 3.9: If A is any convex sub *l*-subring of R, then the L-fuzzy subset λ of R defined by

$$\lambda(x) = \begin{cases} s \text{ if } x \in A \\ t \text{ if } x \notin A \end{cases}$$

 $\lambda(x) = \begin{cases} s \text{ if } x \in A \\ t \text{ if } x \not\in A \end{cases}$ Where s,t \in L and t < s, is a L-fuzzy convex sub \emph{l} -ring of R.

Theorem 3.10: Let R and R¹ be two *l*-rings. Let λ and μ be L-fuzzy convex sub *l*-rings of R and R¹ respectively. If f: $R \rightarrow R^1$ be a epimorphism, then

- $f(\lambda)$ is a L-fuzzy convex sub *l*-ring of R¹, provided that λ is f- invariant. (i)
- (ii) $f^{1}(\mu)$ is a L-fuzzy convex sub *l*-ring of R.

Theorem.3.11: Let f be a homomorphism of R onto R¹. If λ and μ are L-fuzzy convex sub *l*-rings of R, then $f(\lambda \cap \mu) = f(\lambda) \cap f(\mu)$, provided that if at least one of λ of μ is f – invariant.

Definition3.12: Let λ be a L-fuzzy subset of an *l*-ring R. The smallest L-fuzzy convex sub *l*-ring of R which contains λ is called the L-fuzzy convex sub *l*-ring of R, generated by λ and is denoted by (λ) .

Theorem 3.13: Let μ be a L-fuzzy subset of an *l*-ring R. Define ν : R \rightarrow L be a L-fuzzy subset as follows: $v(x) = \sqrt{\left\{ \wedge_{y \in A} \mu(y) | A \subseteq R, 1 \le |A| < \infty, x \in \langle A \rangle \right\}} (x \in R).$

Where $\langle A \rangle$ denotes convex *l*-subring generated by A. Then $v = \langle \mu \rangle$, L-fuzzy convex sub *l*-ring generated by μ.

Definition3.14: Let λ be a L-fuzzy subset of an l-ring R. Then λ is called a L-fuzzy maximal convex sub lring of r, if λ is a maximal element in the set of all non constant L-fuzzy convex sub *l*-rings of R under point wise partial ordering.

Theorem 3.15: Let λ be a L-fuzzy subset of an l-ring R. Then λ is a L-fuzzy maximal convex sub l-ring of R if and only if there exist, a maximal convex *l*-subring M of R and maximal element α in L such that $\lambda(x) = \begin{cases} 1, \text{if } x \in A \\ \alpha, \text{otherwise} \end{cases}$

$$\lambda(x) = \begin{cases} 1, & \text{if } x \in A \\ \alpha, & \text{otherwise} \end{cases}$$

Definition 3.16: A non constant L-fuzzy convex sub *l*-ring of an *l*-ring R is called L-fuzzy prime convex sub *l*-ring if and only if for any –fuzzy convex sub *l*-rings μ and ν , $\mu \cap \nu \subseteq \lambda \Rightarrow$ either $\mu \subseteq \lambda$ or $\nu \subseteq \lambda$.

Lemma 3.17: If λ is a L-fuzzy prime convex sub *l*-ring of R, then $\lambda(o) = 1$.

Theorem 3.18: Let λ be a L –fuzzy subset of R. Then λ is a L-fuzzy prime convex sub l-ring of R if and only if there exists a pair (P, α) , where P is a prime convex *l*-sub ring and α is an irreducible element of L. such that

$$\lambda(x) = \begin{cases} 1, & \text{if } x \in P \\ \alpha, & \text{otherwise} \end{cases}$$

 $\lambda(x) = \begin{cases} 1, \text{if } x \in P \\ \alpha, \text{otherwise} \end{cases}$ **Definition 3.19:** A L-fuzzy sub *l*-ring λ of R is said to be a L-fuzzy *l*-ideal of R,

- if x, a \in R, $|x| \le |a| \Rightarrow \lambda(x) \ge \lambda(a)$ and
- (ii) $\lambda(xy) \ge \lambda(x) \lor \lambda(y)$ for all $x, y \in R$

As above, we can define L-fuzzy prime ideals and L-fuzzy maximal ideals.

References

- Dixit, V.N., Kumar, R and Ajmal, N., Fuzzy ideals and fuzzy prime ideals of ring, Fuzzy sets and systems, 44 (1991) 127-138.
- Fuchs, L., Partially ordered algebraic systems, Pergamon Press, 1963.
- Garrett Birkhoff, Lattice Theory, Americal Mathematical Society Colloquim publications, Volume 3.
- Goguen, J.A., L-fuzzy sets, J.Math. Anal.Appl. 18 (1967), 145 -174. 4.
- Keimel, K., The representation of lattice ordered groups and rings, by sections in sheaves, Lecture 5. notes in Maht., Vol.248, Springer, Berling, 1971.
- Kumar, R., Fuzzy irreducible ideals in rings, Fuzzy sets and systems 42 (1991) 360-379. 6.
- Kumar, R., Fuzzy Algebra, Volume 1, University of Delhi Publication Division, 1993. 7.
- 8. Mordeson, J.N and Malik, D.S., Fuzzy commutative algebra, World Scientific publishing. Co. pvt.
- Naseem Ajmal, Fuzzy lattices, information Sciences 79 (1994), 271 291. 9.
- Rosenfeld, A., fuzzy groups, J.Math. Anal. Appl. 35 (1971), 512-217. 10.
- Saibaba G.S.V.S., Fuzzy lattice ordered goups, Southeast Asian Bulletin of Mathematics 32 (2008),
- Saibaba G.S.V.S., Fuzzy convex sub *l*-groups, Annals of fuzzy Mathematics and informatics 11 (6) 12. 2016, b989-1001.
- Saibaba G.S.V.S., L-fuzzy Prime Spectrum of l-groups, Annals of fuzzy Mathematics and informatics 12(2)2016, 175-191.
- Swamy, U.M. and Viswanadha Raju, D., Algebraic fuzzy systems, Fuzzy sets and systems, 41(1991), 14. 187-194.
- Swamy, U.M. and Viswanadha Raju, D.,Irreducibility in algebraic fuzzy systems, Fuzzy sets and systems, 41(1991), 233-241.
- 16. Zadeh, L.A., Fuzzy sets, Inform and control, 8 (1965), 338-353.
