FUZZY L-IDEALS IN L-RINGS

Dr. G.S.V.Satya Saibaba

Head of the Department of Mathematics, Sri Y.N.College (A), Narsapur, W.G.Dt, A.P, India Email: saibabagannavarapu65@yahoo.com

Received: Jan. 2020 Accepted: Feb. 2020 Published: Feb. 2020

Abstract: The aim of this paper is to introduce the notions of L-fuzzy l- ideals and L – Fuzzy α congruences of l-ring R with values in a complete lattice which is infinite meet distributive and investigate some properties and investigate the existence of one to one correspondence between the lattice L – Fuzzy l-ideals and the lattice of L – Fuzzy congruences of R; infact, this correspondence is a Lattice isomorphism.

Keywords: L-fuzzy l- ideals, L -Fuzzy prime l- ideals ,L-fuzzy maximal l- ideals and L - Fuzzy α Congruences.

Mathematics Subject Classification (2010): 06D72, 06F15, 08A72, 03E72, 18B35.

Introduction: Ever since L.A.Zadeh introduced the notion of fuzzy sets, the theory of fuzzy sets has attracted several researchers in the areas of Mathematics, Computer Science, Engineering and Technology. J.A.Goguen initiated a more abstract study of fuzzy sets by replacing the values set [0,1] by a complete lattice in an attempt to make a generalized study of fuzzy set theory by studying L-fuzzy sets. Most of the authors considered fuzzy subsets taking values in a complete lattice. Fuzzy algebra is now a well developed part of algebra. Partially ordered algebraic systems play an important role in algebra. Especially *l*-groups, *l*-rings, Vector lattices and f-rings are important concepts in algebra which present an abstract study of rings of continuous functions. In [13], we introduced L-fuzzy sub *l*-groups and L-fuzzy *l*-ideals. In [14], we introduced Fuzzy Convex sub *l*-groups and in [16], we studied L-fuzzy prime spectrum of *l*-groups. In [14], we introduced L – Fuzzy sub *l*-rings and L – Fuzzy Convex sub *l* –rings. The objective of this paper is to study L-fuzzy *l*- ideals of *l*-rings which assume values in a complete lattice which satisfies infinite meet distributive law.

In this paper, we introduce the concepts of L-fuzzy l- ideals, L -Fuzzy prime l- ideals and L-fuzzy maximal l- ideals, L-fuzzy α congruences of l-rings.

Throughout this paper, let $R \neq o$ be an l-ring and L stands for a nontrivial complete lattice in which the infinite meet distributive law, $a \wedge (\vee_{s \in S} s) = \vee_{s \in S} (a \wedge s)$ for any $S \subseteq L$ and $a \in L$ holds. Throughout the paper we consider meet irreducible elements of L only.

1. Preliminaries: Let $R = (R, +, \vee, \wedge)$ be an l-ring with o as the additive identity in R. **Definition 1.1:** A L-fuzzy subset λ of R is said to be a L-fuzzy subring of R, if

i) $\lambda(x-y) \ge \lambda(x) \wedge \lambda(y)$

ii) $\lambda(xy) \ge \lambda(x) \wedge \lambda(y)$, for all $x,y \in R$.

Definition 1.2: A L-fuzzy subset λ of R is said to be a L-fuzzy l- ideal of R, if

- i) $\lambda(x-y) \geq \lambda(x) \wedge \lambda(y)$
- ii) $\lambda(xy) \ge \lambda(x) \lor \lambda(y)$, for all $x,y \in R$.

Definition 1.3 A L-fuzzy subset λ of R is said to be a L-fuzzy sub *l*-ring of R, if

- i) $\lambda(x y) \ge \lambda(x) \wedge \lambda(y)$
- ii) $\lambda(xy) \ge \lambda(x) \wedge \lambda(y)$
- iii) $\lambda(x \vee y) \ge \lambda(x) \wedge \lambda(y)$

iv) $\lambda(x \wedge y) \ge \lambda(x) \wedge \lambda(y)$ for all $x,y \in R$.

Definition 1.4: A L-fuzzy sub *l*-ring λ of R is said to be a L-fuzzy convex sub *l*-ring of R if x, a \in G, $0 \le x \le a \Rightarrow \lambda(x) \ge \lambda(a)$ (Convexity condition).

2. L-Fuzzy *l*- **ideals:** In this section we introduce the concept of L-fuzzy *l*- ideals.

Definition 2.1: A L-fuzzy sub *l*-ring λ of R is said to be a L-fuzzy *l*-ideal of R,

- (i) if $x, a \in R$, $|x| \le |a| \Rightarrow \lambda(x) \ge \lambda(a)$ and
- (ii) $\lambda(xy) \ge \lambda(x) \lor \lambda(y)$ for all $x, y \in R$

Theorem 2.2: A L-fuzzy subset λ of an l-ring R is a L-fuzzy l- ideal of R if and only if λ_t is an l-ideal of R for all $t \in \lambda$ $(G) \cup \{t \in L \mid \lambda(o) \ge t\}$.

Theorem 2.3: If λ is a L-fuzzy l- ideal of R, then $Supp(\lambda)$ is a ideal of R, if $Supp(\lambda) \neq \emptyset$ and L is regular. (i.e., if $a \neq 0$, $b \neq 0 \Rightarrow a \land b \neq 0$ where $a, b \in L$).

Theorem 2.4: If A is any *l*- ideal of R, A \neq G, then the L-fuzzy subset λ of R defined by

$$\lambda(x) = \begin{cases} s & \text{if } x \in A \\ t & \text{if } x \notin A, \end{cases}$$

where s, $t \in L$ and $t < s \neq o$, is a L-fuzzy l- ideal of R.

Theorem 2.5: The intersection of any non empty family of L-fuzzy *l*- ideals of R is an *l*-ideal of R.

Theorem 2.6: Let λ be a L-fuzzy l- ideal of an l-ring R. Then $R_{\lambda} = \{x \in G/\lambda(x) = \lambda(0)\}$ is an l-ideal of R.

Definition 2.7: Let λ be a L-fuzzy subset of an l-ring of R. Let $\langle \lambda \rangle = \bigcap \{\mu \mid \lambda \subseteq \mu, \mu \text{ is any } L - \text{fuzzy sub } l - \text{ring of R } \}$. Then $\langle \lambda \rangle$ is called the L-fuzzy l- ideal of R generated by λ . Clearly $\langle \lambda \rangle$ is the smallest L-fuzzy sub l-ring of R which contains λ .

Theorem 2.8: Let μ be a L-fuzzy subset of an l-ring R. Define $\nu: R \to L$ be a L-fuzzy subset as follows: $\nu(x) = \sqrt{\{\wedge_{v \in A} \mu(y) | A \subseteq R, 1 \le |A| < \infty, x \in \langle A \rangle\}}(x \in R)$.

Where $\langle A \rangle$ denotes *l*-ideal generated by A. Then $v = \langle \mu \rangle$, L-fuzzy *l*- ideal generated by μ .

Theorem 2.9: Let R and R¹ be two *l*-rings. Let λ and μ are two L-fuzzy *l*- ideals of R and R¹ respectively. If $f: R \to R^1$ be a homomorphism and onto then

- (i) $f(\lambda)$ is a L-fuzzy *l* ideal of R^1 , provided that λ has sup property,
- (ii) $f^{1}(\mu)$ is a L-fuzzy *l*-ideal of R,
- (iii) $(f(\lambda))(o^1) = \lambda$ (o), where $o^1 \in R^1$ and $o \in R$,
- (iv) $f(G_{\lambda}) \subseteq R^1_{f(\lambda)}$
- (v) If λ is constant on Ker f, then $(f(\lambda))(f(x)) = \lambda(x)$, for all $x \in R$,
- (vi) $f^{-1}(R^1_{\mu}) = R_{f^{-1}(\mu)}$.

As an immediate consequence, if λ is constant on Ker f, it is easy to observe that

i) $f'(f(\lambda)) = \lambda$ and ii) $f(f'(\mu)) = \mu$.

3. L-fuzzy prime *l***- ideals and L - fuzzy maximal** *l***-ideals:** In this section we introduce L - Fuzzy prime *l*-ideals and L - Fuzzy maximal *l*-ideals and their characterizations.

Definition 3.1: Let λ be a L-fuzzy subset of an l-ring R. Then λ is called a L-fuzzy maximal l- ideal of R, if λ is a maximal element in the set of all non constant L-fuzzy l- ideals of R under point wise partial ordering.

Theorem 3.2: Let λ be a L-fuzzy subset of an l-ring R. Then λ is a L-fuzzy maximal

 \emph{l} -ideal of R if and only if there exist, a maximal \emph{l} - ideal M of R and maximal element α in L such that $\lambda(x) = \begin{cases} 1, \text{if } x \in A \\ \alpha, \text{otherwise} \end{cases}$

Definition 3.3: A non constant L-fuzzy convex sub *l*-ring of an *l*-ring R is called L-fuzzy prime *l*- ideal if and only if for any –fuzzy *l*- ideals μ and ν , $\mu \cap \nu \subseteq \lambda \Rightarrow$ either $\mu \subseteq \lambda$ or $\nu \subseteq \lambda$.

Lemma 3.4: If λ is a L-fuzzy prime l- ideal of R, then $\lambda(o) = 1$.

Theorem 3.5: Let λ be a L –fuzzy subset of R. Then λ is a L-fuzzy prime l- ideal of R if and only if there exists a pair (P, α) , where P is a prime l- ideal and α is an irreducible element of L, such that $\lambda(x) = \begin{cases} 1, & \text{if } x \in P \\ \alpha, & \text{otherwise} \end{cases}.$

4. L – Fuzzy α - Congruences in *l*-rings:

In this section we discuss L – Fuzzy α - Congruences and one – to – one correspondence between the lattice L – Fuzzy *l*-ideals and the lattice of L – Fuzzy congruences of R.

Definition 4.1: Let $\alpha \in L - \{0\}$. Let ψ be a L – Fuzzy relation on R. ψ is called,

- (i) α reflexive : if $\psi(x, x) = \alpha$ and $\psi(x, y) \le \alpha \forall x, y \in G$
- (ii) Symmetric : if $\psi(x, y) = \psi(y, x)$, for all $x, y \in G$.
- (iii) Transitive : if ψ o $\psi \subseteq \psi$, where $(\psi$ o ψ) $(x,y) = \bigvee_{z \in \mathbb{R}} [\psi(x,z) \land \psi(z,y)]$.

Definition 4.2: A L – Fuzzy relation ψ on R is called a L – fuzzy α - equivalence relation on R if ψ is (i) α - reflexive, (ii) Symmetric and (iii) Transitive.

Definition 4.3: A L – fuzzy relation ψ is compatible on R if $\psi(a+c,b+d) \ge \psi(a,b) \land \psi(c,d), \ \psi(a\cdot c,b\cdot d) \ge \psi(a,b) \land \psi(c,d)$ $\psi(a\lor c,b\lor d) \ge \psi(a,b) \land \psi(c,d), \ \psi(a\land c,b\land d) \ge \psi(a,b) \land \psi(c,d) \ \forall a,b,c,d \in R.$

Definition 4.4: A Compatible L – fuzzy α - equivalence relation on R is called a L-fuzzy α - congruence on R.

Lemma 4.5: If ψ is an L – fuzzy α - congruence on R, then $\psi(x,y) = \psi(-x,-y)$ for all $x, y \in G$.

Lemma 4.6: If ψ is a L – fuzzy α - congruence of R, then $\psi(x - y, 0) = \psi(x, y) \forall x, y \in G$.

Lemma 4.7: Intersection of any non empty family of L – fuzzy α - congruence relations on R, is a L – fuzzy α - congruence relation on R.

Theorem 4.8: The set of all L- Fuzzy α - congruences $C(R, \alpha)$ is a complete lattice under the relation \subseteq i.e., $(\theta, \psi \in C(R, \alpha), \theta \subseteq \psi \Leftrightarrow \theta(x, y) \leq \psi(x, y), \forall (x, y) \in R \times R)$.

Definition 4.9: Let μ be a L – fuzzy l- ideal of R such that $\mu(0) = \alpha$. A L – fuzzy relation θ_{μ} can be defined on R by

$$\theta_{\mu}(x,y) = \begin{cases} \mu(x-y) & \text{if } x \neq y \\ \alpha & \text{if } x = y \end{cases}$$

Lemma 4.10: θ_{μ} is a L – fuzzy equivalence relation on R.

Lemma 4.11: $\theta_{\mu}(-x, -y) = \theta_{\mu}(x, y), \forall x, y \in R$.

Lemma 4.12: The L – fuzzy relation θ_μ is defined on R is L – Fuzzy compatible.

Theorem 4.13: θ_{μ} L – Fuzzy α - congruence on R.

Theorem 4.14: Let ψ be a L – Fuzzy α - congruence relation on R. Define the L – Fuzzy subset λ_{ψ} of R, by $\lambda_{\psi}(x) = \psi(x, 0)$, $\forall x \in R$. Then λ_{ψ} is a L – fuzzy l- ideal of R.

Now, the following theorems gives a one to one correspondence between L – Fuzzy α - congruences and L – Fuzzy l- ideals of a l-ring R. We denote

 $L_{\alpha}(R) = \{ \mu \in L(R) | \mu(0) = \alpha \}$ and $C(R, \alpha) = \text{Set of all } L - \text{Fuzzy } \alpha - \text{congruences}.$

Theorem 4.15: If $\mu \in L_{\alpha}(R)$, then $\lambda_{(\theta_{\mu})} = \mu$.

Theorem 4.16: If $\psi \in C(R, \alpha)$, then $\theta_{(\lambda_{H})} = \psi$.

Theorem 4.17 : The mappings $\mu \to \psi_{\mu}$: $L_{\alpha}(R) \to C(R, \alpha)$ and $\theta \to \lambda_{\theta}$: $C(R, \alpha) \to L_{\alpha}(R)$ are mutual inverses. Moreover, the mappings are lattice isomorphisms.

References:

- 1. Dixit, V.N., Kumar, R and Ajmal, N., Fuzzy *l* ideals and fuzzy prime ideals of ring, Fuzzy sets and systems, 44 (1991) 127-138.
- 2. Fuchs, L., Partially ordered algebraic systems, Pergamon Press, 1963.
- Garrett Birkhoff, Lattice Theory, Americal Mathematical Society Colloquim publications, Volume XXV.
- 4. Goguen, J.A., L-fuzzy sets, J.Math. Anal.Appl. 18 (1967), 145 -174.
- 5. Keimel, K., The representation of lattice ordered groups and rings, by sections in sheaves, Lecture notes in Maht., Vol.248, Springer, Berling, 1971.
- 6. Kumar, R., Fuzzy irreducible ideals in rings, Fuzzy sets and systems 42 (1991) 360-379.
- 7. Kumar, R., Fuzzy Algebra, Volume 1, University of Delhi Publication Division, 1993.
- 8. Mordeson, J.N and Malik, D.S., Fuzzy commutative algebra, World Scientific publishing. Co. pvt. Ltd.
- 9. Naseem Ajmal, Fuzzy lattices, information Sciences 79 (1994), 271 291.
- 10. Rosenfeld, A., fuzzy groups, J.Math. Anal. Appl. 35 (1971), 512-217.
- 11. Saibaba G.S.V.S., Fuzzy lattice ordered goups, Southeast Asian Bulletin of Mathematics 32 (2008), 749-766.
- 12. Saibaba G.S.V.S., Fuzzy convex sub *l*-groups, Annals of fuzzy Mathematics and informatics 11 (6) 2016, b989-1001.
- 13. Saibaba G.S.V.S., L-fuzzy Prime Spectrum of *l*-groups, Annals of fuzzy Mathematics and informatics 12(2)2016, 175-191.
- 14. Saibaba G.S.V.S., Fuzzy convex sub *l* rings, Mathematical Sciences International Research Journal, Vol.8, issue 2, Nov-2019, 119 123.
- 15. Swamy, U.M. and Viswanadha Raju, D., Algebraic fuzzy systems, Fuzzy sets and systems, 41(1991), 187-194.
- 16. Swamy, U.M. and Viswanadha Raju, D.,Irreducibility in algebraic fuzzy systems, Fuzzy sets and systems, 41(1991), 233-241.
- 17. Zadeh, L.A., Fuzzy sets, Inform and control, 8 (1965), 338-353.
