ANNUAL CURRICULAR PLAN I/III/V

YEAR: **2022-2023**

SEMESTER & PAPER: I BSC SEMESTER – I (New Syllabus) –PAPER-I MECHANICS, WAVES & OSCILLATIONS NAME OF THE LECTURER: P RAMAKRISHNA RAO & P Rajeswari

Month & Week	Hours available	Syllabus Topic	Additional Inputs / Value Additions		Curricula	ar Activity			Co-Curric	ular Activity	
				Activity	Hours Allotted	Whether Conducted	If not Alternate Date	Activity	Hours Allotted	Whether Conducted	If not Alternate Date
October, 2022	12	 Mechanics of Particles: Review of Newton's Laws of Motion, Motion of variable mass system, Motion of a rocket, Multistage rocket, Concept of impact parameter, scattering cross-section, Rutherford scattering- Derivation. Mechanics of Rigid bodies: Rigid body, rotational kinematic relations, Equation of motion for a rotating body, Angular momentum and Moment of inertia tensor, Euler equations, Precession of a spinning top, Gyroscope, Precession of atom and nucleus in magnetic field, Precession of the equinoxes. 	Precession of atom and nucleus in magnetic field	Mechanics of Particles Mechanics of Rigid bodies	6	Yes		PPT Assignment PPT	1	Yes Yes Yes	
November,	16	Motion in a Central Force Field:									

2022		Central forces, definition and examples, characteristics of central forces, conservative nature of central forces, Equation of motion under a central force, Kepler's laws of planetary motion- Proofs, Motion of satellites. Relativistic Mechanics: Introduction to relativity, Frames of	Motion of satellites.	Motion in a Central Force Field	8	Yes	PPT Assignment	1	Yes Yes	
		reference, Galilean transformations, absolute frames, Michelson-Morley experiment, negative result, Postulates of Special theory of relativity, Lorentz transformation, time dilation, length contraction, variation of mass with velocity, Einstein's mass-energy relation	variation of mass with velocity	Relativistic Mechanics	8	Yes	PPT Student seminars	1	Yes Yes	
December, 2022	16	Undamped, Damped and Forced oscillations: Simple harmonic oscillator and solution of the differential equation, Damped harmonic oscillator, Forced harmonic oscillator – Their differential equations and solutions, Resonance, Logarithmic decrement, Relaxation time and Quality factor. Complex vibrations: Fourier theorem and evaluation of the Fourier coefficients, analysis of		Undamped, Damped and Forced oscillations	8	Yes	Assignment 1 Assignment 1		YES	
		periodic wave functions-square wave.		vibrations						
January, 2023	08	Vibrating Strings: Transverse wave propagation along a stretched string, General solution of wave equation and its significance, Modes of vibration of stretched string clamped at ends, Overtones and		Vibrating Strings	8	Yes	Assignment 1		Yes	

Harmonics, Melde's strings. Ultrasonics: Ultrasonics, General Properties of ultrasonic waves, Production of ultrasonics by piezoelectric and magnetostriction methods, Detection of ultrasonics, Applications of ultrasonic waves, SONAR		Ultrasonics	8	Yes		Student seminar	1	Yes	
---	--	-------------	---	-----	--	--------------------	---	-----	--

ANNUAL CURRICULAR PLAN II/IV/VI

YEAR: 2022-2023 SEMESTER & PAPER: II BSC SEMESTER - II (New Syllabus) - PAPER: II Title: WAVE OPTICS NAME OF THE LECTURER: V SANDYA & P Rajeswari

Month & Week	Hours available	Syllabus Topic	Additional Inputs / Value Additions	(Curricular A	Activity			Co-Currio	cular Activity	
				Activity	Hours Allotted	Whether Conducted	If not Alternate Date	Activity	Hours Alloted	Whether Conducted	If not Alternate Date
February, 2023	16	Interference of light: Introduction, Conditions for interference of light, Interference of light by division of wave front and amplitude, Interference in thin films: Plane parallel and wedge-shaped films, colours in thin films, Newton's rings in reflected light-Theory and experiment, Determination of wavelength of monochromatic light, Michelson interferometer and determination of wavelength.		Interference of light	16	Yes		Assignment PPT	1	Yes	
March, 2023	16	Diffraction of light: Introduction, Types of diffraction: Fresnel and Fraunhoffer diffractions, Distinction between Fresnel and Fraunhoffer diffraction, Fraunhoffer diffraction at a single slit. Determination of wavelength of light using diffraction grating, Resolving power of grating, Fresnel's half period zones, Zone plate, comparison of zone		Diffraction of light:	06	Yes		PPT Assignment	1	Yes	

		plate with convex lens.					
April,	16	Polarisation of light:					
2023		Polarized light: Methods of production of plane	Polarisation of	12	Yes	Assignment 1	
		polarized light, Double refraction, Brewster's law,	light:				Yes
		Malus law, Nicol prism, Nicol prism as polarizer					
		and analyzer, Quarter wave plate, Half wave plate,					
		Plane, Circularly and Elliptically polarized light-					
		Production and detection, Optical activity,					
		Laurent's half shade polarimeter: determination of				Assignment	YES
		specific rotation.	Aberrations:	06	Yes	IV 1	
		Aberrations: Monochromatic aberrations,					
		Spherical aberration, Methods of minimizing				Student 1	Yes
		spherical aberration, Coma, Astigmatism and				seminar	105
		Curvature of field, Distortion; Chromatic					
		aberration-the achromatic doublet; Achromatism					
		for two lenses (i) in contact and (ii) separated by a					
		distance.					
May	08	Fibre optics:					
		Introduction to Fibers, different types of fibers,	Fibre optics:	06	Yes	Student 1	Yes
		rays and modes in an optical fiber, Principles of				seminar I	
		fiber communication (qualitative treatment only),					
		Advantages of fiber optic communication.					
		Lasers and Holography:	Lasers and	06	Yes	Assignment 1	YES
		Lasers: Introduction, Spontaneous emission,	Holography:				
		stimulated emission, Population Inversion, Laser					
		principle, Einstein coefficients, Types of lasers-					
		He-Ne laser, Ruby laser, Applications of lasers;					
		Holography: Basic principle of holography,					
		Applications of holography.					

ANNUAL CURRICULAR PLAN II/IV/VI

YEAR: 2022-2023

SEMESTER & PAPER: II BSC SEMESTER- III PAPER-III HEAT & THERMODYNAMICS NAME OF THE LECTURER: Dr A P V APPA RAO, Dr L MALLESWARA RAO, Sri CH SUNDAR SINGH, G SUVARCHALA DEVI & A RAJESH

Month & Week	Hours available	Syllabus Topic	Additional Inputs / Value Additions		Curricular A	Activity			Co-Curricula	ar Activity	
				Activity	Hours Allotted	Whether Conducted	If not Alternate Date	Activity	Hours Allotted	Whether Conducted	If not Alternate Date
October, 2022	12	Kinetic theory of gases: Introduction – Deduction of Maxwell's law of distribution of molecular speeds, Transport Phenomena – Viscosity of gases – thermal conductivity – diffusion of	freedom	Transport Phenomena	01	YES					
		gases. Thermodynamics : Introduction – Reversible and irreversible processes – Carnot's engine and its efficiency – Carnot's theorem – Second law of thermodynamics, Kelvin's and Claussius statements – Thermodynamic scale of temperature.	Thermodynamic scale of temperature and its identity with perfect gas scale	Carnot's engine and it's efficiency	01	YES		Assignment I	1	YES	
November, 2022	16	Entropy :- Entropy, physical significance –									

									1
		Change in entropy in reversible	Channan	07	VES	A sector of TT	1 1	VEG	
		and irreversible processes –	Change of Entropy of a	07	YES	Assignment II	1 hour	YES	
		Entropy and disorder – Entropy of	perfect gas			Seminar			
		universe – Temperature- Entropy	pericet gus			bennnar	1	YES	
		(T-S) diagram. Change of Entropy							
		of a perfect gas – Change of				Assignment III			
		entropy when ice changes into					1 Hour	YES	
		steam.							
		Thermodynamic potentials and				Seminar			
		Maxwell's equations:				Seminar			
		Thermodynamic potentials –	Clausius-	08	YES		1 Hour	YES	
		Derivation of Maxwell's	Clayperon's				1 110ui	1 LS	
		thermodynamic relations –	equation						
		Clausius-Clayperon's equation –	•						
		Derivation for ratio of specific							
		heats – Derivation for difference of							
		two specific heats for perfect gas.							
		Joule Kelvin effect – expression							
		for Joule Kelvin coefficient for							
		perfect and Vanderwaal's gas.							
/	16	Low temperature Physics:							
2022		Introduction – Joule Kelvin effect		1.5	V EC			N TE G	
		- liquefaction of gas using porous	Adiabatic demagnetization	15	YES	Assignment IV	1 hour	YES	
		plug experiment. Joule expansion –	Production of			1 V			
		Distinction between adiabatic and	low temperatures						
		Joule Thomson expansion –	I						
		Expression for Joule Thomson							
		cooling – Liquefaction of helium,							
		Kapitza's method – Adiabatic							
		demagnetization - Production of							
		low temperatures - Principle of							
		refrigeration, vapour compression							

		type. Working of refrigerator and Air conditioning machines. Effects of Chloro and Fluro Carbons on Ozone layer.							
January, 2023	08	Quantum theory of radiation:Black body-Ferry's black body –distribution of energy in thespectrum of Black body – Wein'sdisplacement law, Wein's law,Rayleigh-Jean's law – Quantumtheory of radiation - Planck's law –deduction of Wein's law andRayleigh-Jeans law from Planck'slaw - Measurement of radiation –Earth as a Black Body. Types ofpyrometers – Disappearingfilament optical pyrometer –experimental determination –determination of solar constant,effective temperature of sun.	Disappearing filament optical pyrometer – experimental determination	15	Yes	Assignment V	1 hour	YES	

ANNUAL CURRICULAR PLAN I/III/V

YEAR: 2022-2023 SEMESTER & PAPER: II BSC SEMESTER-IV PAPER-IV Title: ELECTRICITY, MAGNETISM AND ELECTRONICS NAME OF THE LECTURER: P Ramakrishna Rao, Ch Sundar Singh, V Durga Sandhya & M S Ranganayakulu

Month & Week	Hours available	Syllabus Topic	Additional Inputs / Value Additions		Curricular	Activity			Co-Curricu	ılar Activity	
				Activity	Hours Allotted	Whether Conducted	If not Alternate Date	Activity	Hours Allotted	Whether Conducted	If not Alternate Date
February, 2023	12	Electrostatics: (6hrs) Gauss's law-Statement and its proof, Electric field intensity due to (i) uniformly charged solid sphere and (ii) an infinite conducting sheet of charge, Deduction of Coulomb's law from Gauss law, Electrical		Electrostatics	8	YES					
		 potential–Equipotential surfaces, Potential due to a (i) dipole (ii)uniformly charged sphere 2. Dielectrics: Dielectrics-Polar and Non-polar dielectrics-Effect of electric field on dielectrics, Dielectric strength, Capacitance of a parallel plate condenser with dielectric slab between the plates, Electric displacement D, electric polarization P, Relation between D, E and P, Dielectric constant and electric 		Dielectrics	6	YES		Assignment I Assignment II	1	YES	

		susceptibility.								
March, 2023	12	3. Magnetostatics: Biot-Savart's law and its applications: (i) circular loop and (ii) solenoid, Divergence and curl of magnetic field, Ampere's Circuital Law and its application to Solenoid, Hall effect, determination of Hall	Divergence and curl of magnetic field,	Magnetostatics	10	YES	Assignment- III	01 Hour	YES	
		 coefficient and applications. 4. Electromagnetic Induction: Faraday's laws of electromagnetic induction, Lenz's law, Self induction and Mutual induction, Self inductance of a long 		Moving charges in electric and magnetic fields	8	YES	Seminar	02 Hours	YES	
		 solenoid, Mutual inductance of two coils, Energy stored in magnetic field, Eddy currents and Electromagnetic damping. 5. Alternating currents: Alternating current - Relation between current and voltage in LR and CR circuits, Phasor and Vector diagrams, LCR series and parallel resonant circuit, Q –factor, 		Electromagnetic Induction	4	YES	Assignment IV	01 Hour	YES	
April, 2023	12	Power in ac circuits, Power factor.6. Electromagnetic waves-Maxwell'sequations:Idea of displacement current, Maxwell'sequations-Derivation, Maxwell's waveequation (with derivation), Transversenature of electromagnetic waves, Poyntingtheorem (Statement only).Basic Electronic devices:PN junction diode, Zener diode and LightEmitting Diode (LED) and their I-Vcharacteristics, Zener diode as a regulator-	Hybrid parameters, Determination							

		Transistors and its operation, CB, CE and CC configurations, Input and output characteristics of a transistor in CE mode, Relation between alpha, beta and gamma; Hybrid parameters, Determination of hybrid parameters from transistor characteristics; Transistor as an amplifier.	parameters from transistor characteristics								
May, 2023	12	Digital Electronics: (12 hrs) Number systems, Conversion of binary to decimal system and vice versa, Binary addition & Binary subtraction (1's and 2's complement methods), Laws of Boolean algebra, DeMorgan's laws-Statements and Proofs, Basic logic gates, NAND and NOR as universal gates, Exclusive-OR gate, Half adder and Full adder circuits.		Digital electronics	6	YES	Assign V	ment	1	YES	

ANNUAL CURRICULAR PLAN II/IV/VI

YEAR: 2022-2023 SEMESTER & PAPER: II BSC SEMESTER - IV PAPER- V Title: MODERN PHYSICS NAME OF THE LECTURER: DR APV APPARAO, DR L MALLESWARA RAO, P Rajeswari & G Suvarchala Devi

Month &	Hours		Additional Inputs / Value Additions		Curricu	ılar Activity			Co-Curricu	llar Activity	
Week	available	Syllabus Topic		Activity	Hours Allotted	Whether Conducted	If not Alternate Date	Activity	Hours Allotted	Whether Conducted	If not Alternate Date
February, 2023	12	Atomic and Molecular Physics : Vector atom model and Stern-Gerlach experiment, Quantum numbers associated with it, Angular momentum of the atom, Coupling schemes, Spectral terms and spectral notations, Selection rules, Intensity rules, Fine structure of Sodium D-lines, Zeeman effect, Experimental arrangement to study Zeeman effect; Raman effect, Characteristics of Raman effect, Experimental arrangement to study Raman effect, Quantum theory of Raman effect, Applications of Raman effect	Spectral terms and spectral notations, Selection rules, Intensity rules		09	Yes		Assignment I	1	Yes	
March, 2023	12	2. Matter waves & Uncertainty Principle: Matter waves, de Broglie's hypothesis, Wave length of matter waves, Properties of matter waves, Davisson and Germer's experiment, Phase and group velocities (Qualitative treatment), Heisenberg's uncertainty principle for position and momentum& energy and time, Illustration of uncertainty principle using diffraction of beam of electrons (Diffraction by a single slit) and	complementarity.		09	Yes		Student seminar I Assignment II	1	Yes	

	 photons (Gamma ray microscope), Bohr's principle of complementarity. UNIT-III: 3. Quantum (Wave) Mechanics : Basic postulates of quantum mechanics, Schrodinger time independent and time dependent wave equations-Derivations, Physical interpretation of wave function, Eigen functions, Eigen values, Application of Schrodinger wave equation to (i) one dimensional potential box of infinite height (Infinite Potential Well) and (ii) one dimensional harmonic oscillator 	one dimensional harmonic oscillator	09	Yes	Assignment III	1	YES	
April, 12 2023	 4. Nuclear Physics : (12 hrs) Nuclear Structure: General Properties of Nuclei, Mass defect, Binding energy; Nuclear forces: Characteristics of nuclear forces- Yukawa's meson theory; Nuclear Models: Liquid drop model, The Shell model, Magic numbers; Nuclear Radiation detectors: G.M. Counter, Cloud chamber, Solid State detector; Elementary Particles: Elementary Particles and their classification. UNIT-V: 5. Nano materials :(7hrs) Nanomaterials – Introduction, Electron confinement, Size effect, Surface to volume ratio, Classification of nano materials– (0D, 1D, 2D); Quantum dots, Nano wires, Fullerene, CNT, Graphene (Mention of structures and properties), Distinct properties of nano materials (Mention- mechanical, optical, electrical, and magnetic 	Characteristics of nuclear forces- Yukawa's meson theory	09	Yes	PPT Assignment IV Career Guidance Class	1 1 1	Yes YES Yes	

		properties); Mention of applications of nano materials: (Fuel cells, Phosphors for HD TV, Next Generation Computer chips, elimination of pollutants, sensors)							
May, 2023	06	6. Superconductivity: (5 hrs) Introduction to Superconductivity, Experimental results-critical temperature, critical magnetic field, Meissner effect, Isotope effect, Type I and Type II superconductors, BCS theory (elementary ideas only), Applications of superconductors.	only),	09	Yes	PPT seminar Career Guidance Class Assignment V	1 1 1	Yes Yes Yes Yes	

ANNUAL CURRICULAR PLAN

YEAR: 2022-2023 SEMESTER & PAPER: III BSC SEMESTER – V PAPER-VI Title: LOW TEMPERATURE PHYSICS & REFRIGERATION NAME OF THE LECTURER: Ch Sundar Singh, M S Ranganayakulu, K Naveen Kumar, V Durga Sandhya & A Rajesh

Month & Week	Hours available	Syllabus Topic	Additional Inputs / Value Additions	(Co-Curricular Activity						
				Activity	Hours Allotted	Whether Conducted	If not Alternate Date	Activity	Hours Allotted	Whether Conducted	If not Alternate Date
October, 2022	09	UNIT-I PRODUCTION OF LOW TEMPERATURE Production of low temperatures- Introduction, Joule-Thomson effect, Regenerative cooling, Different methods of liquefaction of gases, liquefaction of air- Claude's method, Production of liquid hydrogen and Helium-Kapitza's method, Adiabatic demagnetization, Properties of materials at low temperatures, Superconductivity (qualitative treatment only). UNIT-II MEASUREMENT OF LOW TEMPERATURE Gas thermometer and its correction and calibration, Secondary thermometers, resistance thermometers, thermocouples, Vapour pressure thermometers, Magnetic thermometers, Advantages and drawbacks of each type of thermometer.	Helium- Kapitza's method	Joule-Thomson effect, Regenerative cooling, Different methods of liquefaction of gases.	01	YES		Assignment	1	YES	
November, 2022	12	UNIT-IIIPRINCIPLESOFREFRIGERATIONIntroductiontoRefrigeration-Naturaland	applications of Refrigeration	Types of refrigeration -	01	YES		Assignment	1	YES	

December, 2022	12	artificial refrigeration , Stages of refrigeration, Types of refrigeration -Vapor compression and vapor absorption refrigeration systems, Refrigeration cycle and explanation with a block diagram, applications of Refrigeration Introductory ideas on air-conditioning (qualitative treatment only). Refrigerants-Introduction, Ideal refrigerant, Properties of refrigerant, Requirement of refrigerants , Selection of refrigerants , Classification of refrigerants, commonly used refrigerants, Eco-friendly refrigerants. UNIT-IV COMPONENTS OF REFIGERATOR Refrigerator and its working, Block diagram, Coefficient of Performance (COP), Tons of refrigeration (TR) and Energy Efficiency Ratio (EER), <i>Refrigerator components:</i> Types of compressors, evaporators and condensers, differences between Heat engine and refrigerator , Refrigerant leakage and detection.	Requirement of refrigerants, Selection of refrigerants differences between Heat engine and refrigerator,	Vapor compression and vapor absorption refrigeration systems, Refrigerator and its working, Block diagram, Coefficient of Performance (COP), Tons of refrigeration (TR) and Energy	01	YES	Assignment	01	YES	
January, 2023	06	UNIT-V APPLICATIONS OF LOW TEMPERATURE & REFRIGERATION Applications of Low temperatures: Preservation of biological material, Food freezing, liquid nitrogen and liquid hydrogen in medical field, Superconducting magnets in MRI. Applications of refrigeration: Domestic refrigerators, Water coolers, Cold storages, Ice plants, Food preservation methods, Chemical and Process industries, Cold treatment of metals.		Preservation of biological material, Food freezing,	01	YES	Seminar Assignment	01	YES YES	

ANNUAL CURRICULAR PLAN

YEAR: 2021-2022

SEMESTER & PAPER: III BSC SEMESTER – V PAPER-VII Title: SOLAR ENERGY AND APPLICATIONS

NAME OF THE LECTURER: Dr L Malleswara Rao, P Rama Krishna Rao, P Rajeswari, G Suvarchala Devi, & K Naveen Kumar

Month & Week	Hours available	Syllabus Topic	Additional Inputs / Value Additions		Curricula	r Activity		Co-Curricular Activity					
				Activity	Hours Allotted	Whether Conducted	If not Alternate Date	Activity	Hours Allotted	Whether Conducted	If not Alternate Date		
October, 2022	9	Unit - I: BASIC CONCEPTS OF SOLAR ENERGY (10hrs) Spectral distribution of solar radiation, Solar constant , zenith angle and Air-Mass, standard time, local apparent time, equation of time, direct, diffuse and total radiations. Prediction of available solar radiation, Solar energy- Importance and global warming, Storage of solar energy, Solar pond. Pyrheliometer - working principle, direct radiation measurement, Pyrometer-working Principle, diffuse radiation measurement, Distinction between the two meters.	Prediction of available solar radiation, Solar energy- Importance and global warming, Storage of solar energy, Solar pond.	Pyrheliometer - working principle, direct radiation measurement,	9	Yes		Assignment I Student seminar I	1	Yes			
November, 2022	12	Unit - II: SOLAR THERMAL COLLECTORS (10hrs) Solar Thermal Collectors-Introduction, Types of Thermal collectors, Flat plate collector – liquid heating type, Energy balance equation and efficiency, Solar Thermal Power Plant Evacuated tube collector, Definitions of collector efficiency, Testing of flat-plate	Solar Thermal Power Plant	Types of Thermal collectors, Flat plate collector – liquid heating type, Energy balance	12	Yes		Assignment II PPT I Assignment III Career Guidance	1 1 1 1	Yes Yes Yes Yes			

		collector, solar water heating system, natural		equation and				lass			
		and forced circulation types. Concentrating		efficiency,				labb			
		collectors, Solar cookers, Solar dryers, Solar		efficiency,							
		desalinators. Solar green houses.									
		FUNDAMENTALS OF SOLAR CELLS									
			Photovoltaic								
		Semiconductor interface, Types, homo									
		junction, hetero junction and Schottky barrier,	applications,								
		advantages and drawbacks, Photovoltaic Effect,	Solar								
		Photovoltaic cell, equivalent circuit, output	photovoltaic								
		parameters, conversion efficiency,	cell and its								
		Photovoltaic applications, Solar photovoltaic	working								
		cell and its working principle, Measurement	principle								
		of I-V characteristics, series and shunt									
		resistance of a solar cell, their effect on									
D 1	10	efficiency.		N 11 '	10	XZ		• • • • • • • • • • • • • • • • • • • •	1	\$7	
December,	12	TYPES OF SOLARCELLS AND	Solar PV	Modules in	12	Yes	A	ssignment IV	1	Yes	
2022		MODULES	system and	series and			DI				
		Types of solar cells, Crystalline silicon solar	its	parallel,			PI	PT II	1	Yes	
		cells, poly-Si cells, Thin film solar cells-	components.	Bypass and					1	res	
		CdTe/CdS and CuInGaSe2/CdS cell		blocking							
		configurations, structures, advantages and		diodes.			C.				
		limitations, Multi junction cells – Double and				V		udent	1	Yes	
		triple junction cells. Module fabrication steps,				Yes	se	minar II	1	105	
		Modules in series and parallel, Bypass and									
		blocking diodes. Solar PV system and its									
T	0.6	components.	NT⁴ 1 1	D // .	0.6	37		• • • • • • •	1	X 7	
January,	06	SOLAR PHOTOVOLTAIC SYSTEMS	Nickel Cadmium	Batteries:	06	Yes		ssignment V	1	Yes	
2023		Energy storage in PV systems: Need of energy	Batteries,	Solid-state				areer	1	X 7	
		storage, Energy storage modes, electrochemical	Role of	battery,				uidance	1	Yes	
		storage, Batteries: Primary and secondary,	carbon Nano-	Molten			C	lass			
		Solid-state battery, Molten solvent battery, lead	tubes in	solvent							
		acid battery and dry batteries-Nickel	electrodes.	battery, lead							
		Cadmium Batteries, Electrical storage –		acid battery							
		Differences between Capacitor and Battery,		and dry							
		Super capacitor. Role of carbon Nano-tubes		batteries							
		in electrodes.									