DEPARTMENT OF PHYSICS

COURSE OUTCOMES

SEMESTER - I

MECHANICS WAVES AND OSCILLATION

CO#	Course Outcome
CO1	Understand Newton's laws of motion and motion of variable mass system and its application to rocket motion and the concepts of impact parameter, scattering cross section. (K2)
CO2	Apply the rotational kinematic relations, the principle and working of gyroscope and it applications and the processional motion of a freely rotating symmetric top. (K2)
CO3	Comprehend the general characteristics of central forces and the application of Kepler's laws to describe the motion of planets and satellite in circular orbit through the study of law of Gravitation. (K3)
CO4	Understand postulates of Special theory of relativity and its consequences such as length contraction, time dilation, relativistic mass and mass-energy equivalence. (K3)
CO5	Examine phenomena of simple harmonic motion and the distinction between undamped, damped and forced oscillations and the concepts of resonance and quality factor with reference to damped harmonic oscillator. (K4)
CO6	Appreciate the formulation of the problem of coupled oscillations and solve them to obtain normal modes of oscillation and their frequencies in simple mechanical systems. (K4)

SEMESTER - II

WAVE OPTICS

CO#	Course Outcome
CO1	Understand the phenomenon of interference of light and its formation in (i)
	Lloyd's single mirror due to division of wave front and (ii) Thin films, Newton's rings and Michelson interferometer due to division of amplitude. (K5)
	rings and Michelson interferometer due to division of amplitude. (K3)
CO2	Distinguish between Fresnel's diffraction and Fraunhoffer diffraction and observe
	the diffraction patterns in the case of single slit and the diffraction grating. (K4)
CO3	Describe the construction and working of zone plate and make the comparison of
	zone plate with convex lens. (K5)
CO4	Explain the various methods of production of plane, circularly and polarized light

	and their detection and the concept of optical activity. (K4)
CO5	Comprehend the basic principle of laser, the working of He-Ne laser and Ruby
	lasers andtheir applications in different fields.
CO6	Explain about the different aberrations in lenses and discuss the methods of
	minimizing them.

SEMESTER – III

HEAT AND THERMODYNAMICS

CO#	Course Outcome
CO1	Understand the basic aspects of kinetic theory of gases, Maxwell-Boltzman
	distribution law, equipartition of energies, mean free path of molecular collisions
	and the transport phenomenon in ideal gases. (K2)
CO2	Gain knowledge on the basic concepts of thermodynamics, the first and the second
	law of thermodynamics, the basic principles of refrigeration, the concept of
	entropy, thethermodynamic potentials and their physical interpretations. (K4)
CO3	Understand the working of Carnot's ideal heat engine, Carnot cycle and its
	efficiency. (K3)
CO4	Develop critical understanding of concept of Thermodynamic potentials, the
	formulation of Maxwell's equations and its applications. (K3)
CO5	Differentiate between principles and methods to produce low temperature and
	liquefy air and also understand the practical applications of substances at low
	temperatures.
CO6	Examine the nature of black body radiations and the basic theories.

SEMESTER - IV

ELECTRICITY, MAGNETISM AND ELECTRONICS

CO#	Course Outcome
CO1	Understand the Gauss law and its application to obtain electric field in different cases and formulate the relationship between electric displacement vector, electric polarization, Susceptibility, Permittivity and Dielectric constant. (K3)
CO2	Distinguish between the magnetic effect of electric current and electromagnetic

	inductionand apply the related laws in appropriate circumstances. (K3)
CO3	Understand Biot and Savart's law and Ampere's circuital law to describe and
	explain the generation of magnetic fields by electrical currents. (K3)
CO4	Develop an understanding on the unification of electric and magnetic fields and
	Maxwell's equations governing electromagnetic waves. (K3)
CO5	Phenomenon of resonance in LCR AC-circuits, sharpness of resonance- factor,
	Power factor and the comparative study of series and parallel resonant circuits.
CO6	Describe the operation of p-n junction diodes, Zener diodes, light emitting diodes
	and transistors.

MODERN PHYSICS

CO#	Course Outcome
CO1	Develop an understanding on the concepts of Atomic and Modern Physics,
	basicelementary quantum mechanics and nuclear physics. (K3)
CO2	Develop critical understanding of concept of Matter waves and Uncertainty
	principle. (K3)
CO3	Get familiarized with the principles of quantum mechanics and the formulation
	ofSchrodinger wave equation and its applications. (K3)
CO4	Examine the basic properties of nuclei, characteristics of Nuclear forces,
	salientfeatures of nuclear models and different nuclear radiation detectors. (K3)
CO5	Classify Elementary particles based on their mass, charge, spin, half life and
	interaction.
CO6	Get familiarized with the nano materials, their unique properties and applications.

ELECTRICITY, MAGNETISM & ELECTRONICS

CO#	Course Outcome
CO1	Understand the Gauss law and its application to obtain electric field in different
	cases and formulate the relationship between electric displacement vector, electric
	polarization, Susceptibility, Permittivity and Dielectric constant. (K4)
CO2	Distinguish between the magnetic effect of electric current and electromagnetic
	inductionand apply the related laws in appropriate circumstances. (K4)
CO3	Understand Biot and Savart's law and Ampere's circuital law to describe and
	explain the generation of magnetic fields by electrical currents. (K1)(K4)
CO4	Develop an understanding on the unification of electric and magnetic fields and
	Maxwell's equations governing electromagnetic waves. (K2)
CO5	Phenomenon of resonance in LCR AC-circuits, sharpness of resonance- factor,
	Power factor and the comparative study of series and parallel resonant circuits.
CO6	Describe the operation of p-n junction diodes, Zener diodes, light emitting diodes
	and transistors.

SEMESTER -V

MODERN PHYSICS

CO#	Course Outcome
CO1	Develop an understanding on the concepts of Atomic and Modern Physics,
	basicelementary quantum mechanics and nuclear physics. (K2)
CO2	Develop critical understanding of concept of Matter waves and Uncertainty principle. (K2)
CO3	Get familiarized with the principles of quantum mechanics and the formulation
	ofSchrodinger wave equation and its applications. (K3)
CO4	Examine the basic properties of nuclei, characteristics of Nuclear forces,
	salientfeatures of nuclear models and different nuclear radiation detectors. (K2)
CO5	Classify Elementary particles based on their mass, charge, spin, half life and
	interaction. (K3)
CO6	Get familiarized with the nano materials, their unique properties and applications.

SEMESTER -VI

RENEWABLE ENERGY

CO#	Course Outcome
CO1	Basic knowledge of different forms of energy resources and its role in economic
	Development. (K3)
CO2	Study of the effects of environmental degradation, global warming, nuclear power
	generation. (K2)
CO3	Knowledge on Solar, Wind, Ocean, Hydrogen energy conversions. (K4)
CO4	Analysis of conversion of bio mass into fuels, biomass plants types and
	design.(K4)

SOLAR THERMAL AND PHOTOVOLTAIC ASPECTS

CO#	Course Outcome	
CO1	Study the basics of solar radiations and solar intensity measurements. (K2)	
CO ₂	Understanding the classification, design and performance parameters of	
	concentrating collectors.(K4)(K6)	
CO3	Analyze the fabrication of different types of solar cells. (K5)	

WIND, HYDRO & OCEAN ENERGIES

CO#	Course Outcome
CO1	Introductory knowledge of wind generation, meteorology of wind. Types and
	classification of wind energy convertors. (K2)(K4)
CO2	Understand the construction and working of wind turbine and its characteristics.
	(K3)
CO3	Understand the technology process of Ocean, thermal and tidal energy conversion.
	(K4)

ENERGY STORAGE DEVICES

CO#	Course Outcome
CO1	A thorough understanding of different modes of energy storage. (K4)
CO2	Analyze different types of electro chemical energy storage systems. (K4)
CO3	Understanding of difference between and fuel cell components, principle and it's
	working. (K3)
CO4	Knowledge of different types of fuel cells and the problems with fuel cells and their
	Applications. (K4)