DEPARTMENT OF MATHEMATICS PROGRAMME: M.Sc (Maths)

PO No.	Programme Outcomes
	Upon completion of the M.Sc.degree programme, the graduate will be able to
PO-1	Obtain through knowledge in pure mathematics.
PO-2	Obtain a basic knowledge in research & methodology.
PO-3	Develop aptitude skills and skill based knowledge.
PO-4	Improve logical and reasoning capacity.
PO-5	Receive training to face SET/NET examinations.

PSO No.	Programme Specific Outcomes
	Upon completion of these courses the student would

PSO-1	Become an individual academic excellence in the discipline of mathematics.
PSO-2	Acquire knowledge for research programme.
PSO-3	Be an entrepreneur for training SET/NET examinations.
PSO-4	Been capable of executing research and research projects.
PSO-5	Become a Software professional.

Course Title	9	Paper I –Algebra 1
Code		M101
CO No.	Course Outcomes	
	Describe	the definitions of Automorphism, Conjugacy and G- sets with it"s
CO-1	examples	6.
	Discussfi	initely generated abelian groups and invariants of finite abelian
CO-2	groups.	
CO-3	ExplainSylow's first theorem, Sylow"s second theorem and Sylow"s third theorem with it"s examples.	
CO-4	Discussideals and homomorphism, Maximal ideal and prime ideal, Nilpotent ideal and nil ideal.	

CO-5	Simply explaine Zorn''s lemma.
CO-6	Learnthe unique factorization domain, principal ideal domain and Euclidean domain.

SEMESTER I

Course Title	e Paper II – Real Analysis-1	
Code	M102	
CO No.	Course Outcomes	
CO-1	Describe the finite countable and uncountable sets, Metric spaces and Compact sets.	
CO-2	Explain the convergent sequences & Cauchy sequences & some special sequences.	
CO-3	Solve the problems to using ratio and root tests and analyze power series	
CO-4	Understand the limits of functions & continuity and compactness and Monotonic functions.	
CO-5	Learn the Mean value theorems ,L- Hospital's Rule and Taylor's theorem.	

Course Title	se Paper III – Differential Equations	
Code		M103
CO No.		Course Outcomes
CO-1	Applications of second order linear differential equations will be studied.	
CO-2	Solve Homogeneous equations and use of a known solution to find another.	
CO-3	Recognise diff	ferential equations that can be solved by each of three methods.
CO-4	Solve the bour values,Eigen f	ndary value problems and by Strum Comparison theorem solved Eigen functions.
CO-5	Review of Power Series and solved first and second order linear equations to verify ordinary, regular singular points.	
CO-6	Understand the linear system and solved homogeneous linear system with constant Co- efficients.	

Course Title		Paper IV – Topology	
C	ode	M104	
CO No.		Course Outcomes	
CO-1		Gain an understanding the algebra of sets, functions,Product of sets, Partitions and equivalence relations.	
CO-2	Learnthe bas examples.	Learnthe basic concepts of openset and closed sets and apply these two sets in real life examples.	
CO-3	Develop the	Knowledge on Topological spaces through the participating in a Quiz.	
CO-4	Know the W	Know the Weak Topologies.	
CO-5	Understand	Understand the Tychnoff's theorem and Ascoli's theorem.	

Cour Title			
Cod	le M105		
CO No.		Course Outcomes	
CO-1	relation, p	Discussrelations, properties of binary relations in a set, Relation matrix and graph of a relation, partition and covering of a set, equivalence relations, compatibility relation, composition of binary relations.	
CO-2	Discuss lattices as partially ordered sets, some properties of lattices, lattices as algebraic systems.		
	ExplainBoolean algebra, sub algebra, direct product and homomorphism.		
CO-3			
CO-4	Acquire the knowledge from Boolean forms and free Boolean algebras, values of Boolean expressions.		
CO-5	Describe r	Describe representations and minimizations of Boolean functions.	
CO-6	Explain finite state machines, Introductory sequential circuits, equivalence of Finite State Machines.		

SEMESTER II

Course Title	e Paper I – Algebra- II	
Code	M201	
CO No.	Course Outcomes	
CO-1	Discuss the definitions of Irreducible polynomials and Eisenstein criterion, Algebraic extensions and algebrically closed fields with it's examples.	
CO-2	Explainsplitting fields and normal extensions, multiple roots, finite fields and Separable extensions.	
	Simply explainfundamental theorem of Galois theory and fundamental theorem	
CO-3	of algebra.	
CO-4	Explain applications of Galois theory to classical problems.	
CO-5	Solve the problems by using radicals, ruler and compass construction.	

Course Title	Paper II – Real Analysis - II	
Code	M202	
CO No.	Course Outcomes	
CO-1	Learn the definition and existence of the Riemann stieltjes Integral.	
CO-2	Acquire the Knowledge of uniform convergence and uniform convergence & continuity and Integration.	
CO-3	Apply the stone wierstrass theorem for obtain results von the function of algebra.	
CO-4	understand the Linear Transformations and the contraction principle.	
CO-5	Give seminars on the implicit function theorem ,the Rank theorem & Derivatives of higher order for improving subject.	

Course Title	Paper III – Complex Analysis - I	
Code	M203	
CO No.	Course Outcomes	
CO-1	Discuss the elementary properties and solved the examples of Analytic functions.	
	Understand the mobius transformations.	
CO-2		
CO-3	Know the fundamentals of Analytic functions, to studied Riemann Stieltjes integrals and Analyze Power Series representation of Analytic function.	
	Learn the Cauchy's theorem and the homotopic version of Cauchy's theorem.	
CO-4		
CO-5	Examine functions are analytic in a punctured disk.	

Cours Title	e Paper IV – Linear Algebra	
Code	M204	
CO No.	Course Outcomes	
CO-1	Explain elementary canonical forms, annihilating polynomials, invariant subspaces.	
CO-2	Discuss Simultaneous triangulation and simultaneous diagonalization.	
CO-3	Describedirect –sum decompositions, invariant direct-sums.	
CO-4	Discuss the primary decomposition theorem, cyclic subspaces and Annihilators. Learned cyclic decompositions and the rational forms.	
CO-5	Acquire the knowledge in the Jordan forms, computation of invariant factors, semi simple operators.	
CO-6	Discuss Bilinear forms, symmetric bilinear forms and skew symmetric Bilinear forms.	

Course Title	Paper V – Probability Theory and Statistics	
Code	M205	
CO No.	Course Outcomes	
CO-1	Discuss Sample spaces, events and the axioms of Probability.	
CO-2	Learn some elementary theorems and Boole's inequality.	
CO-3	Give brief explanation on Conditional probability and studied Bayes theorm.	
CO-4	DiscussDescret and Continuous Random variables and studied Binomial, Poisson,Normal and uniform distributions.	
	Learanmeaning of Correlation, Scatter diagram Karl person's coefficient of	
CO-5	Correlation, Rank Correlation.	
CO-6	Know types of sampling, parameters and solved some problems on tests of significance.	

SEMESTER III

Cours Title	se	Paper I – Functional Analysis	
Code	e	M301	
CO No.	Course Outcomes		
CO-1	Learnlinear transformations, continuous linear transformations, Hahnbanach theorem in Banach spaces.		
CO-2	Explain the open mapping theorem and the conjugate of an operator.		
CO-3	Discuss the definition and some simple properties in Hilbert spaces, orthogonal compliments and orthonormal sets.		
CO-4	Describe the conjugate space, the adjoint of an operator, self-adjoint operators.		
CO-5	Acquire the knowledge in normal and unitary operators and also in projections.		
CO-6	Discussmatrices, determinants and the spectrum of an operator, the spectral theorem in Finite-Dimensional Spectral Theory.		

Course		Paper II – Lebesgue Theory
Title		
Co	de	M302
СО		Course Outcomes
No.		
	Explainalgebra of sets, lebesgue measure, outer measure, measurable set and lebesgue	
CO-1	measure.	
	Discussion- measurable set, measurable function, Little woods's three principles.	
CO-2		
	Describe the Riemann integral, the lebesgue integral of a bounded function over a set of	
CO-3	finite measures.	
00-5		
CO-4	Explain the integral of a non-negative function, the general lebesgue integral convergence	
	in measure.	

CO-5	Acquire the knowledge in differentiation of monotonic functions, functions of bounded variation, differentiation of an integral.
CO-6	LearnLp-spaces, the Holder"s and Minkowski inequalities, convergence and completeness.

Course Title		Paper III – Analytical Number Theory	
Cod	e	M303	
CO No.	Course Outcomes		
CO-1	DiscussMob them.	bius function, Euler totient function and also explained relation between	
CO-2	Learn theDirichlet inverse and Mobius inversion formula, mangoldt function and liouville's function.		
	Describebig oh notation and Euler summation formula.		
CO-3			
CO-4	Explain chebyshev's function, Shapiro's theorem and it's applications.		
CO-5	Learnreduced residue system and Euler-Fermat theorem, Lagrange theorem and it's applications, Chinese remainder theorem and it's applications.		

Course Title		Paper IV – Partial Differential Equations		
Cod	le	M304		
CO No.	Course Outcomes			
CO-1	Recall the ba	Recall the basic concepts of Partial Differential Equations.		
CO-2	Explain the Pfafian Differential forms and equations and some excercises.			
CO-3	1	Solve the problems on cauchy's Method of characteristics & compatiable system of first order equations.		
CO-4	Know the Partial Differential Equations of the second order and solve the linear hyperbolic equations.			
CO-5	understand the elementary solutions, and Method of separation of variables of solving Laplace equation and the wave equation.			

Course Title		Paper V – Elective – ICommutative Algebra		
Cod	le	M305		
CO No.		Course Outcomes		
CO-1	Review the o	definition and elementary properties of rings.		
CO-2	-	Discuss the prime and maximal ideals and explain the various elementary operations performed on ideals.		
CO-3		Give the definition and elementary properties of modules and gave brief treatment of tensor products.		
CO-4	Discusshow	Discusshow tensor products behave for exact sequences.		
CO-5	To educate t	To educate the definitions and simple properties of the formation of fractions.		
CO-6	Discuss the otheorems.	decomposition of an ideal into Primary ideals and establish the uniqueness		

SEMESTER IV

Course Title		Paper I – Measure Theory		
Cod	e	M401		
CO No.		Course Outcomes		
CO-1	Explain cor	vergence and completeness in measure spaces.		
CO-2	Discuss me	Discuss measurable functions, integration, general convergence theorems.		
	Describe sig	gned measures, the Raydon- Nikodym theorem, the LP		
CO-3	spaces.	spaces.		
CO-4	Explain out	Explain outer measures and measurability, the Extension theorem		
CO-5	Discussthe	Discussthe Lebesgue- stieltjes integral, product measures.		
CO-6	Acquire the knowledge in integral operators, inner measure, extension by sets of measure 0, caratheodory outer measure.			

Course Title		Paper II – Numerical Analysis	
Co	ode	M402	
CO No.		Course Outcomes	
CO-1		e roots of a polynomial equation and obtain the initial approximations to olved some problems in different methods.	
CO-2	To find the ro	To find the roots of the equations by some of the iteration methods.	

	Discuss the methods to construct the interpolating polynomials to a function and		
CO-3	interpolate the indicated points.		
CO-4	To evaluate the derivative of a function in the closed form by Numerical methods.		

Course Title		Paper III –Graph Theory
Code		M403
CO No.		Course Outcomes
CO-1	Learnthe	basic concepts of graphs and tress and fundamental circuits.
CO-2	Know th	e cutsets and connectivity and separability.
	Aquire th	he Knowledge of Planar graphs and Dual graphs.
CO-3		
CO-4	Explain t in real lif	he Matrix representation of graphs and Application to a switching network e.
CO-5	Describe	the coloring, covering and Partitioning and further Operation Research.

Course Title		Paper IV – Linear programming
Code		M404
СО	Course Outcomes	
No.		
	Discuss the formulation of linear programming problems, graphical solution and general solution of linear programming problem.	
CO-1	U	
	Describe	simplex method and two- phase method, Big- M method and to resolve
CO-2	degeneracy in linear programming problem, solved problems in simplex method.	

	Explain the concept of duality in linear programming and comparison of the solut
	of the dual and primal.
CO-3	
CO-4	Learn the formulation of assignment problem, Reduction theorem and Hungarian
	assignment method, traveling salesman problems
	Explainformation of transportation problem, methods to find initial basic feasible
	solution and north- West corner rule, lowest cost entry method and Vogel"s
CO-5	approximation method.
CO-6	Discuss optimality test, degeneracy in transportation problems and unbalanced
	transportation problem.

Course Title		Paper V – Elective-II Discrete Dynamical Systems	
Code		M405	
CO No.	Course Outcomes		
CO-1	Discuss Phase portrait, periodic points and stable sets, differentibility and it [*] 's implications.		
CO-2	Explainthe Sarkovskii"stheorem and some basic problems.		
CO-3	Learn the definitions of parameterized families of functions and bifurcations Can set's, symbolic dynamics and chaos.		
CO-4	Describe topological Conjugacy, period doubling casade, Newton method.		
CO-5	Solve the problems on Numerical solutions of differential equations on Newton's method in complex plane.		