ANNUAL CURRICULAR PLAN I/III/V

YEAR: 2021-2022

PAPER: II BSC

111

NAME OF THE LECTURER: P Rajeswari, GS Devi & V D Sandhya

Month &	Hours	Syllabus Topic	Additional								
Week	available		Inputs / Value		Curricular	Activity			Co-Curricu	Ilar Activity	
			Additions								
				Activity	Hours Allotted	Whether Conducted	If not Alternate	Activity	Hours Allotted	Whether Conducted	If not Alternate
lune	16	Aberrations:		Matrix			Date				Date
		Introduction to Chromatic aberration – calculation of longitudinal chromatic aberration of a thin lens – achromatism for two lenses (a) when in contact and (b) when separated by a distance – achromatism of a camera lens – Introduction to Spherical aberration – minimization of spherical aberration – Coma Astigmatism Curvature of field – distortion		methods in Paraxial Optics. Aberrations	10 05	YES		Assignment I			
July	16	Interference Principle of superposition – coherence– conditions for Interference of light. Interference by division of wave front: Fresnel's biprism – determination of wave length of light Determination of thickness of a transparent material using Biprism – change of phase on reflection – Lloyd's mirror experiment. Interference by division of amplitude:		Interference	15	YES		Assignment II	1 hour	YES	

		Oblique incidence of a plane wave on a							
		thin film due to reflected and							
		transmitted light (Cosine law) – Colours							
		of thin films - Non reflecting films				Seminar	1 Hour	YES	
		Interference by a film with two non-							
		parallel reflecting surfaces (Wedge							
		shaped film) – Determination of							
		diameter of wire. Newton's rings in				Assignment	1 Hour	YES	
		reflected light with contact between				Ш			
		lens and glass plate – Determination of							
		wave length of monochromatic light -							
		Michelson Interferometer – types of							
		fringes – Determination of wavelength							
		of monochromatic light and thickness of							
		a thin transparent plate.							
August	16	Polarization:-							
		Polarized light : Methods of Polarization,	Polarization	08	YES	Seminar			
		Polarizatioin by reflection, refraction,					1 hour	YES	
		Double refraction, scattering of light –							
		Brewsters law – Malus law – Nicol prism							
		as polarizer and analyzer – Refraction of							
		plane wave incident on negative crystals							
		(Huygen's explanation) – Quarter wave							
		plate, Half wave plate- Optical activity,							
		analysis of light by Laurent's half shade							
		polarimeter.							
		Lasers :							
		Introduction – Spontaneous emission –							
		Stimulated emission – Population							
		inversion. Laser principle– Types of	Lasers	09	YES				
		Lasers – He-Ne laser – Ruby laser – Semi							
		conductor laser Laser characteristics							
		Applications of lasers.							
September	16	Fiber Optics and Holography:							

		Introduction – Optical fibers – Types of	Fiber Optics &			Assignment-	1 hour	YES	
		optical fibers – Step and graded index	Holography	05	Yes	IV			
		fibers – Fiber material – Principles of							
		fiber communication (qualitative							
		treatment only) advantages of fiber							
		communication. Basic Principle of							
		Holography and its applications. Gabor							
		hologram.							
		Diffraction:							
		Introduction – Fraunhoffer diffraction:-							
		Diffraction due to single slit- Limit of	Diffraction	08	YES	Assignment	1hour	YES	
		resolution – Fraunhoffer diffraction due							
		to double slit – Fraunhoffer diffraction							
		pattern with N slits (diffraction grating).							
		Resolving Power of grating –							
		Determination of wave length of light in							
		normal and oblique incidence methods							
		using diffraction grating.							
October	8	Fresnel diffraction Fresnel's half	Fresnel	08	YES				
		period zones – area of the half period	Diffraction						
		zones – zone plate – Comparison of zone							
		plate with convex lens – Phase reversal							
		zone plate – difference between							
		interference and diffraction. Distinction							
		between Fresnel and Fraunhoffer							
		diffraction.							

ANNUAL CURRICULAR PLAN I/III/V

YEAR: 2021-2022 PAPER: II BSC II SEMESTER – PAPER-IV

NAME OF THE LECTURER: Dr VVS Naidu, ASS Jyothi & MS Ranganayakulu

Month & Hours Syllabus Topic Additional Curricular Activity	Month &	Hours	Syllabus Topic	Additional	Curricular Activity	
---	---------	-------	----------------	------------	---------------------	--

Week	available		Inputs / Value						Co-Curricu	lar Activity	
			Additions	Activity	Hours Allotted	Whether Conducted	If not Alternate Date	Activity	Hours Allotted	Whether Conducted	If not Alternate Date
June	12	Electric field intensity and potential: Gauss's law statement and its proof- Electric field intensity due to (1) Uniformly charged sphere and (2) an infinite conducting sheet of charge. Electrical potential – equi potential surfaces- potential due to i) a point charge, ii) charged spherical shell.		Electrostatics Dielectrics	8	YES		Assignment I	1	YES	
July	12	Dielectrics: Electric dipole moment and molecular polarizability- Electric displacement D, electric polarization P – relation between D, E and P- Dielectric constant and susceptibility. Boundary conditions at the dielectric surface.		Capacitance	10	YES		Assignment II	1	YES	
August	12	Electric and magnetic fields Biot-Savart's law, explanation and calculation of B due to long straight wire, a circular current loop and solenoid – Hall effect – determination of Hall coefficient and applications. Electromagnetic induction Faraday's law-Lenz's law- Self and mutual inductance, coefficient of coupling, calculation of self inductance of a long solenoid, energy stored in magnetic field. Transformer - energy losses - efficiency.		Magnetostatics	10	YES		Assignment- III	01 Hour	YES	
September	12	Alternating currents and electromagnetic waves Alternating current - Relation between current and voltage in LR and CR circuits,		Moving charges in electric and magnetic fields	8	YES		Seminar	02 Hours	YES	

		vector diagrams, LCR series and parallel resonant circuit, Q –factor, power in ac circuits. Maxwell's equations :Idea of displacement current - Maxwell's equations (integral and differential forms) (no derivation), Maxwell's wave equation (with derivation)	Electromagnetic Induction	4	YES	Assignment IV	01 Hour	YES	
		Pointing theorem (statement), production of electromagnetic waves (Hertz experiment).							
October	6	Basic electronics:PN junction diode, Zener diode, I-Vcharacteristics, PNP and NPN transistors,CB, CE and CC configurations – Relationbetween α , β and γ - transistor (CE)characteristics, Transistor as an amplifier.Digital electronics:Number systems - Conversion of binary todecimal system and vice versa. Binarysubtraction (2's complement methods).Lawsof Boolean algebra - De Morgan's laws-statement and proof, Basic logic gates,NAND and NOR as universal gates,exclusive-OR gate, Half adder and Fulladder.	Electromagnetic Induction	6	YES	Assignment V	1	YES	

ANNUAL CURRICULAR PLAN II/IV/VI

YEAR: 2021-2022 II BSC II SEMESTER (New Syllabus) PAPER: II NAME OF THE LECTURER: V SANDYA & P Rajeswari

Month & Week	Hours available	Syllabus Topic	Additional Inputs / Value Additions		Curricular /	Activity			Co-Curric	ular Activity	
				Activity	Hours Allotted	Whether Conducted	lf not Alternate Date	Activity	Hours Alloted	Whether Conducted	lf not Alternate Date
September 2021	20	Interference of light: Introduction, Conditions for interference of light, Interference of light by division of wave front and amplitude, Interference in thin films: Plane parallel and wedge-shaped films, colours in thin films, Newton's rings in reflected light-Theory and experiment, Determination of wavelength of monochromatic light, Michelson interferometer and determination of wavelength.		Interference of light	06	Yes		Assignment PPT	1	Yes	
October 2021	16	Diffraction of light: Introduction, Types of diffraction: Fresnel and Fraunhoffer diffractions, Distinction between Fresnel and Fraunhoffer diffraction, Fraunhoffer diffraction at a single slit. Determination of wavelength of light using diffraction grating, Resolving power of grating, Fresnel's half period zones, Zone plate, comparison of zone plate with convex lens.		Diffraction of light:	06	Yes		PPT Assignment	1	Yes Yes	

November	16	Polarisation of light:							
2021		Polarized light: Methods of production of plane	Polarisation of	12	Yes	Assignment	1		
		polarized light, Double refraction, Brewster's	light:					Yes	
		law, Malus law, Nicol prism, Nicol prism as							
		polarizer and analyzer, Quarter wave plate, Half							
		wave plate, Plane, Circularly and Elliptically							
		polarized light-Production and detection, Optical							
		activity, Laurent's half shade polarimeter:				Assignment		YES	
		determination of specific rotation.	Aberrations:	06	Yes	IV	1	120	
		Aberrations: Monochromatic aberrations,							
		Spherical aberration, Methods of minimizing							
		spherical aberration, Coma, Astigmatism and				Student	1	Yes	
		Curvature of field, Distortion; Chromatic				seminar			
		aberration-the achromatic doublet; Achromatism							
		for two lenses (i) in contact and (ii) separated by							
		a distance.							
December	16	Fibre optics:							
2021		Introduction to Fibers, different types of fibers,	Fibre optics:	06	Yes	Student	1	Yes	
		rays and modes in an optical fiber, Principles of				seminar I			
		fiber communication (qualitative treatment only),							
		Advantages of fiber optic communication.							
		Lasers and Holography:	Lasers and	06	Vos	Assignment	1	VES	
		Lasers: Introduction, Spontaneous emission,	Holography:	00	163	Assignment	T	125	
		stimulated emission, Population Inversion, Laser							
		principle, Einstein coefficients, Types of lasers-							
		He-Ne laser, Ruby laser, Applications of lasers;							
		Holography: Basic principle of holography,							
		Applications of holography.							

ANNUAL CURRICULAR PLAN I/III/V

YEAR: 2021-2022 PAPER: I BSC I SEMESTER (New Syllabus)

NAME OF THE LECTURER: DR. L. MALLESWARA RAO, P RAMAKRISHNA RAO, ASS JYOTHI, V SANDYA & P

Rajeswari

Month & Week	Hours available	Syllabus Topic	Additional Inputs / Value		Curricula	ar Activity			Co-Curric	ular Activity	
			Additions	Activity	Hours Allotted	Whether Conducted	If not Alternate Date	Activity	Hours Alloted	Whether Conducted	lf not Alternate Date
November 2021	16	Mechanics of Particles: Review of Newton's Laws of Motion,		Mechanics of Particles	4	Yes		PPT	1	Yes	
		Motion of variable mass system, Motion of a rocket, Multistage rocket, Concept of impact parameter, scattering cross- section, Rutherford scattering-Derivation. Mechanics of Rigid bodies: Rigid body, rotational kinematic relations, Equation of motion for a rotating body, Angular momentum and Moment of inertia tensor, Euler equations, Precession of a spinning top, Gyroscope, Precession of atom and nucleus in magnetic field, Precession of the equinoxes.	Precession of atom and nucleus in magnetic field	Mechanics of Rigid bodies	6	Yes		Assignment PPT	1	Yes	
December 2021	16	Motion in a Central Force Field: Central forces, definition and examples, characteristics of central forces, conservative nature of central forces, Equation of motion under a central force, Kepler's laws of planetary motion- Proofs, Motion of satellites. Relativistic Mechanics: Introduction to relativity, Frames of reference, Galilean transformations, absolute frames, Michelson-Morley	Motion of satellites. variation of mass with velocity	Motion in a Central Force Field Relativistic Mechanics:	6	Yes		PPT Assignment PPT	1 1 1	Yes Yes Yes	

		experiment, negative result, Postulates of Special theory of relativity, Lorentz transformation, time dilation, length contraction, variation of mass with velocity, Einstein's mass-energy relation				Student seminars	1	Yes	
January 2022	16	Undamped, Damped and Forced oscillations:Simple harmonic oscillator and solution of the differential equation, Damped harmonic oscillator, Forced harmonic oscillator – Their differential equations and solutions, Resonance, Logarithmic decrement, Relaxation time and Quality factor.Complex vibrations: Fourier theorem and evaluation of the	Undamped, Damped and Forced oscillations Complex vibrations	5	Yes	Assignment Assignment	1	YES	
		Fourier coefficients, analysis of periodic wave functions-square wave.							
February 2022	16	Vibrating Strings: Transverse wave propagation along a stretched string, General solution of wave equation and its significance, Modes of vibration of stretched string clamped at ends, Overtones and Harmonics, Melde's strings	Vibrating Strings:	8	Yes	Assignment	1	Yes	
March 2022	12	Ultrasonics: Ultrasonics, General Properties of ultrasonic waves, Production of ultrasonics by piezoelectric and magnetostriction methods, Detection of ultrasonics, Applications of ultrasonic waves, SONAR	Ultrasonics	8	Yes	Student seminar	1	Yes	

ANNUAL CURRICULAR PLAN II/IV/VI

YEAR: 2020-2021 PAPER: II BSC III SEMESTER PAPER-II NAME OF THE LECTURER: Dr A P V Appa Rao, Sri J Rama Mohan,

P Rajeswari & GS Devi

Month & Week	Hours available	Syllabus Topic	Additional Inputs / Value Additions		Curricular A	ctivity			Co-Curricu	ılar Activity	
				Activity	Hours	Whether	lf not	Activity	Hours	Whether	lf not
					Allotted	Conducted	Alternate		Allotted	Conducted	Alternate
							Date				Date
December	15	Kinetic theory of gases:									
		Introduction – Deduction of Maxwell's									
		law of distribution of molecular speeds,		Transport	01	YES					
		Transport Phenomena – Viscosity of		Phenomena							
		gases – thermal conductivity – diffusion									
		of gases.									
		Thermodynamics :									
		Introduction – Reversible and									
		irreversible processes – Carnot's									
		engine and its efficiency – Carnot's								1/50	
		theorem – Second law of		Carnot's engine	01	YES		Assignment	1	YES	
		thermodynamics, Kelvin's and Claussius		and it's efficiency				1			
		statements – Thermodynamic scale of									
		temperature.									
January	15	Entropy:-									
		Entropy, physical significance – Change									

		in entropy in reversible and irreversible							
		processes – Entropy and disorder –	Change of	07	YES	Assignment	1 hour	YES	
		Entropy of universe – Temperature-	Entropy of a			11			
		Entropy (T-S) diagram. Change of	perfect gas			Cominon	1	VEC	
		Entropy of a perfect gas – Change of				Seminar		TES	
		entropy when ice changes into steam.							
		Thermodynamic potentials and				Assignment	1 Hour	YES	
		Maxwell's equations:				Ш			
		Thermodynamic potentials – Derivation							
		of Maxwell's thermodynamic relations							
		– Clausius-Clayperon's equation –	Clausius-	08	YES	Seminar	1 Hour	VES	
		Derivation for ratio of specific heats -	Clayperon's			Serima	THOUL	115	
		Derivation for difference of two	equation						
		specific heats for perfect gas. Joule	1						
		Kelvin effect – expression for Joule							
		Kelvin coefficient for perfect and							
		Vanderwaal's gas.							
February	15	Low temperature Physics:							
		Introduction – Joule Kelvin effect –							
		liquefaction of gas using porous plug	Adiabatic	15	YES	Assignment	1 hour	YES	
		experiment. Joule expansion –	demagnetization			IV			
		Distinction between adiabatic and	low						
		Joule Thomson expansion – Expression	temperatures						
		for Joule Thomson cooling –	••••••••						
		Liquefaction of helium, Kapitza's							
		method – Adiabatic demagnetization –							
		Production of low temperatures –							
		Principle of refrigeration, vapour							
		compression type. Working of							
		refrigerator and Air conditioning							

		machines. Effects of Chloro and Fluro							
		Carbons on Ozone layer.							
March	15	Quantum theory of radiation: Black body-Ferry's black body – distribution of energy in the spectrum of Black body – Wein's displacement law, Wein's law, Rayleigh-Jean's law – Quantum theory of radiation - Planck's law – deduction of Wein's law and Rayleigh-Jeans law from Planck's law - Measurement of radiation – Earth as a Black Body. Types of pyrometers – Disappearing filament optical pyrometer – experimental determination – determination of solar constant, effective temperature of sun.	Disappearing filament optical pyrometer – experimental determination	15	Yes	Assignment V	1 hour	YES	

YEAR: 2021-2022

PAPER:III BSC VI SEMESTER PAPER-VII

NAME OF THE LECTURER: GS Devi, K Naveen Kumar & A

Rajesh

Month & Week	Hours available	Syllabus Topic Additiona Inputs / V Additions	l alue		Curricular	Activity			Co-Curricu	llar Activity	
				Activity	Hours	Whether	lf not	Activity	Hours	Whether	lf not
					Allotted	Conducted	Alternate		Allotted	Conducted	Alternate
							Date				Date

December	12	 Introduction to Energy: Definition and units of energy, power, Forms of energy, Energy flow diagram to the earth. Role of energy in economic and social development. Environmental Effects: Environmental degradation due to energy production and utilization, air and water pollution, depletion of ozone layer, global warming, biological damage due to environmental degradation. 	Role of energy in economic and social development.	7 01 1	YES	Assignment	1	YES
January	12	Global Energy Scenario: Energy consumption in various sectors, energy resources, coal, oil, natural gas, nuclear and hydroelectric power. Indian Energy Scene: Energy resources available in India, urban and rural energy consumption, nuclear energy - promise and future, energy as a factor limiting growth, need for use of new and renewable energy sources.	Energy resources available in India	01	YES	Assignment	1	YES
February	12	 Solar energy: Solar energy, Spectral distribution of radiation, solar water heating system, Applications, Solar cooker. Solar cell, Types of solar cells. Wind Energy: Introduction, Principle of wind energy conversion, and Components of wind turbines, Operation and characteristics of a wind turbine, Applications of wind energy. 	Solar energy, Spectral distribution of radiation	01	YES	Assignment	01	YES
March	12	Ocean Energy: Introduction, Principle of ocean thermal energy conversion, Tidal power generation, Tidal energy technologies, Energy from waves. Hydrogen Energy: History of hydrogen	Energy from biomass – Sources of	01	YES	Seminar	01	YES

energy-Hydrogen production methods- Electrolysis of water, uses of hydrogen as fuel. Bio-Energy Energy from biomass – Sources of biomass –	biomass – Conversion of biomass into fuels	Assignment	01	YES	
Conversion of biomass into fuels – Energy through fermentation – Pyrolysis, gasification and combustion – Aerobic and anaerobic bio-conversion – Properties of biomass –Properties and characteristics of biogas.					

ANNUAL CURRICULAR PLAN II/IV/VI

Y	'EAR: 2021	- 2022 (V SEMESTER) PAPER	: VI		NAME OF	THE LECTURE	R: DR APV A	PPARAO, DR L MA	LLESWAR	A RAO,	
						G Suva	rchala Devi 8	A P RAJESWARI			
Month &	Hours	Syllabus Topic	Additional Inputs / Value Additions		Curric	ular Activity			Co-Currici	ular Activity	
Week	available			Activity	Hours	Whether	lf not	Activity	Hours	Whether	lf not
					Allotted	Conducted	Alternate		Alloted	Conducted	Alternate
							Date				Date
Dec	12	Atomic and molecular physics			09	Yes		Assignment I	1	Yes	
		Introduction –Drawbacks of Bohr's atomic model.									
		Vector atom model and Stern-Gerlach experiment -									
		quantum numbers associated with it. L-S and j- j									
		coupling schemes. Zeeman effect (Definition only) -									
		Raman effect, hypothesis, Stokes and Anti Stokes lines.									
		Quantum theory of Raman effect. Experimental									

		arrangement – Applications of Raman effect.							
Jan	12	Matter waves & Uncertainty Principle		09	Yes	Student	1	Yes	
		Matter waves, de Broglie's hypothesis - wavelength of				seminar I			
		matter waves, Properties of matter waves - Davisson				Assignment II			
		and Germer experiment – Heisenberg's uncertainty							
		principle for position and momentum (x and p) &							
		Energy and time (E and t).							
		Quantum (wave) mechanics		09	Yes	Assignment III	1	YES	
		Basic postulates of quantum mechanics-Schrodinger							
		time independent and time dependent wave equations-							
		derivations. Physical interpretation of wave function.							
		Eigen functions, Eigen values. Application of							
		Schrodinger wave equation to particle in one							
	10	dimensional infinite box.							
Feb	12	General Properties of Nuclei		09	Yes	PPT	1	Yes	
		Basic ideas of nucleus -size, mass, charge density				• • • • • • • • • •			
		(matter energy), binding energy, magnetic moment,				Assignment IV	1	VEC	
		electric moments. Liquid drop model and Shell model					1	TES	
		(qualitative aspects only) - Magic numbers.			Voc	Caraar			
		Alpha docay: basics of a docay processor. Theory of a			163	Career Guidanco Class			
		decay Gamow's theory Geiger Nuttal law B-decay				Guidance Class	1	Yes	
		Energy kinematics for B-decay positron emission							
		electron canture neutrino hypothesis							
Mar	06	Crystal Structure		09	Yes	PPT	1	Yes	
		Amorphous and crystalline materials, unit cell, Miller							
		indices, reciprocal lattice, types of lattices, diffraction of							
		X-rays by crystals, Bragg's law, experimental				seminar	1	Yes	
		techniques, Laue's method.				C	4	N	
		Superconductivity				Cuidance Class	L L	res	
		critical field Moisspor offect Isotopo offect Type				Guidance Class			
		and type II superconductors - applications of				Assignment V	1	Voc	
		superconductors				Assignment V	1	103	
		critical field - Meissner effect – Isotope effect - Type I and type II superconductors - applications of superconductors				Assignment V	1	Yes	

·					

١	(EAR: 202 1	I- 2022 (VI SEMESTER) PAPER	R: VIII CE 1		NAME OF	THE LECTURE	R: P RAMAKRIS	HNA RAO			
Month & Week	Hours available	Syllabus Topic	Additional Inputs / Value Additions		Curr	icular Activity			Co-Curricu	ılar Activity	
				Activity	Hours Allotted	Whether Conducted	lf not Alternate Date	Activity	Hours Alloted	Whether Conducted	lf not Alternate Date
Nov	6	Basics of Solar Radiation: Structure of Sun, Solar constant, Concept of Zenith angle and air mass, Definition of declination, hour angle, solar and			9	Yes		Assignment I	1	Yes	
Dec	12	surface azimuth angles; Direct, diffuse and total solar radiation, Solar intensity measurement – pyrheliometer.						Student seminar I	1	Yes	
Jan	12	Radiative Properties and Characteristics of Materials: Kirchoff's law – Relation between absorptance, emittance and reflectance; Selective Surfaces - preparation and characterization, Types			9	Yes		Assignment II PPT I	1	Yes Yes	
		Flat Plate Collectors (FPC) : Description of flat plate collector, Liquid heating type FPC, Energy balance equation, Efficiency, Temperature distribution in FPC, Definitions of fin efficiency and collector efficiency, Evacuated tubular collectors.			9	Yes		Assignment III Career Guidance Class	1	Yes Yes	
Feb	12	Solar photovoltaic (PV) cell: Physics of solar cell –Type of interfaces, homo, hetero and schottky interfaces, Photovoltaic Effect, Equivalent circuit			9	Yes		Assignment IV	1	Yes	

		of solar cell, Solar cell output parameters, Series and shunt resistances and its effect on cell				PPT II	1	Yes	
		efficiency; Variation of efficiency with band-gap and temperature. Solar PV systems: Solar cell module assembly – Steps involved in the fabrication of solar module, Module performance, I-V characteristics, Modules in series and parallel, Module protection, Solar PV system and its components, PV array, inverter, battery and load.		9	Yes	Student seminar II	1	Yes	
Mar	06	Solar thermal applications: Solar hot water system (SHWS), Types of SHWS, Standard method of testing the efficiency of SHWS; Passive space heating and cooling concepts, Solar desalinator and drier, Solar thermal power generation.		06	Yes	Assignment V Career Guidance Class	1	Yes Yes	

١	YEAR: 202 :	1-22 (VI SEMESTER) P	APER: VIII C	E 2	NAME (OF THE LEC	TURER: CH SI	JNDAR SINGH				
Month & Week	Hours available	Syllabus Topic		Additional Inputs / Value Additions		Curr	icular Activity			Co-Curricu	lar Activity	
					Activity	Hours	Whether	If not	Activity	Hours	Whether	lf not
						Allotted	Conducted	Alternate		Alloted	Conducted	Alternate
								Date				Date
Nov	6	Introduction: Wind generation, meter wind, world distribution of wind, w variation with height, wind speed statis	orology of ind speed stics, Wind			9	Yes		Assignment I	1	Yes	
Dec	12	energy conversion principles; introduction; Types and classification	General of WECS;						Student seminar I	1	Yes	

		Power, torque and speed characteristics.						
Jan	12	Wind Energy Conversion System: Aerodynamic design principles; Aerodynamic theories; axial momentum, blade element; Rotor characteristics;	9	Yes	Assignment II	1	Yes	
		Maximum power coefficient.			ΡΡΤ Ι	1	Yes	
		Wind Energy Application: Wind pumps: Performance analysis, design concept and testing:	9	Yes	Assignment III	1	Yes	
		Principle of wind energy generation; Wind energy in India; Environmental Impacts of Wind farms.			Career Guidance Class	1	Yes	
Feb	12	 Small Hydropower Systems: Overview of micro, mini and small hydro systems; Hydrology; Elements of pumps and turbine; Selection and design criteria of pumps and turbines; Site selection; Speed and voltage regulation. Ocean Thermal, Tidal and Wave Energy Systems: Ocean Thermal - Introduction, Technology process, working principle, Electricity generation methods from OCET, Advantages and disadvantages, Applications of OTEC. 	9	Yes Yes	Assignment IV PPT II Student seminar II	1 1 1	Yes Yes Yes	
Mar	06	Tidal Energy - Introduction, Origin and nature of tidal energy, Wave Energy – Introduction, Basics of wave motion, Power in waves, Wave energy conversion devices, Advantages and disadvantages, Applications of wave energy.	05	Yes	Assignment V Career Guidance Class	1	Yes Yes	

YEAR: 2021-2022 (VI SEMESTER)

PAPER: VIII CE3

NAME OF THE LECTURER: DR L MALLESWARA RAO

Month & Week	Hours available	Syllabus Topic	Additional Inputs / Value Additions		Curr	icular Activity			Co-Curricu	Ilar Activity	
				Activity	Hours Allotted	Whether Conducted	If not Alternate Date	Activity	Hours Alloted	Whether Conducted	lf not Alternate Date
Nov Dec	6	Energy Storage: Need of energy storage; Different modes of energy storage, Flywheel storage, Electrical and magnetic energy storage: Capacitors, electromagnets; Chemical Energy storage: Thermo-chemical, photo-chemical, electro-chemical, Hydrogen for energy storage.			9	Yes		Assignment I Student seminar I	1	Yes Yes	
Jan	12	Electrochemical Energy Storage Systems: Batteries: Primary, Secondary, Lithium, Solid-state and molten solvent batteries; Lead acid batteries; Nickel Cadmium Batteries; Advanced Batteries. Role of carbon nano-tubes in electrodes. Magnetic and Electric Energy Storage Systems: Superconducting Magnet Energy Storage (SMES) systems; Capacitor and battery: Comparison and application; Super capacitor:			9 9	Yes		Assignment II PPT I Assignment III Career Guidance Class	1 1 1 1	Yes Yes Yes	
Feb	12	Fuel Cell: Fuel cell definition, difference between batteries and fuel cells, fuel cell components, principle and working of fuel cell, performance characteristics, efficiency. Advantages and disadvantages of fuel cell.			9	Yes		Assignment IV PPT II Student seminar II	1 1	Yes Yes Yes	

Mar	06	Types of Fuel Cells: Classification, Alkaline fuel		05	Yes	Assignment V	1	Yes	
		cell, phosphoric acid fuel cell, molten carbonate				Career	1	Yes	
		fuel cell; solid oxide fuel cell, applications of fuel				Guidance			
		cells.				Class			