		SRI Y.N.COLLEG ANNUAL CURRI		,		-534275 018-2019					
Nar	ne of the	Lecturer: Dr. PSNH Ramachandra Rao, Ch. Udaya Bhaska			AN 20	$\frac{10-2019}{\text{Paper} - I \delta}$	k II			Class: I B.S	c
			Addition		Curricu	lar activity	-		Co-curr	icular activity	-
S. No	Month	Syllabus-Topic	al inputs Value Addition	Activity	Hours allotted	Whether Conducted	If not altern ate days	Activity	Hou rs allot ted	Whether Conducted	If no altern ate days
	JUN	 (Inorganic Chemistry) p-block elements: General characteristics of elements of groups 13, 14, 15,	Phospho nitrilic chloride s	Orienta tion class Bridge course BOS		yes yes					
		1. Structural theory in Organic Chemistry: Types of bond fission and organic reagents (Electrophilic, Nucleophilic, and free radical reagents including neutral						Seminar		yes	

AUGFactors influencing the polarization of covalent bonds, electro negativity – inductive effect. Application of inductive effect (a) Basicity of amines (b) Acidity of carboxylic acides (c) Stability of carbonium ions. Resonance or Mesomeric effect, application to (a) acidity of phenol, and (b) acidity of carboxylic acids. Hyper conjugation and its application to stability of carbonium ions. Free radicals and alkenes, carbanions, carbenes and nitrenes. Types of Organic reactions : Addition – electrophilic, nucleophilic and free radical. Elimination- Examples (mechanism not required).Mid -1 examsyesSeminaryesSEPSEPAcyclic Hydrocarbons: Alkenes-Preparation atability of alkenes. Addition of hydrogenation and stability of alkenes. Addition of hX, Markonikov's rule,Image: SeminarImage: SeminarImage: SeminarImage: Seminar		molecules like H ₂ O, NH ₃ & AlCl ₃). Bond polarization :					1
AUGelectro negativity – inductive effect. Application of inductive effect (a) Basicity of amines (b) Acidity of carboxylic acides (c) Stability of carbonium ions. Resonance or Mesomeric effect, application to (a) acidity of phenol, and (b) acidity of carboxylic acids. Hyper conjugation and its application to stability of carbonium ions, Free radicals and alkenes, carbanions, carbenes and nitrenes. Types of Organic reactions : Addition – electrophilic, nucleophilic and free radical. Substitution – electrophilic, nucleophilic and free radical. Elimination- Examples (mechanism not required).Mid -1 examsyesSEPSEPSeminas Addition of hydrogen-beat of hydrogenation and stability of alkenes. Addition of halogen and its mechanism. Addition of HX, Markonikov's rule,Hydrogenation and itsHydrogenation and its application its and its application its application its application its application its application its application is addition of halogen and its mechanism. Addition of HX, Markonikov's rule,Hydrogenation and its application its application its application its and stability of alkenes.Hyper conjugation and its application its <b< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></b<>							
AUGinductive effect (a) Basicity of amines (b) Acidity of carboxylic acides (c) Stability of carbonium ions. Resonance or Mesomeric effect, application to (a) acidity of phenol, and (b) acidity of carboxylic acids. Hyper conjugation and its application to stability of carbonium ions, Free radicals and alkenes, carbanions, carbenes and nitrenes. Types of Organic reactions : Addition – electrophilic, nucleophilic and free radical. Substitution – electrophilic, nucleophilic and free radical. Elimination- Examples (mechanism not required).Mid -1 examples (mechanism not required). 2. Acyclic Hydrocarbons: Alkenes-Preparation of alkenes. Addition of hydrogen-heat of hydrogenation and stability of alkenes. Addition of HX, Markonikov's rule,Assign mentyesSeminaryes		0 1					
AUG carboxylic acides (c) Stability of carbonium ions. Resonance or Mesomeric effect, application to (a) acidity of phenol, and (b) acidity of carboxylic acids. Hyper conjugation and its application to stability of carbonium ions, Free radicals and alkenes, carbanions, carbenes and nitrenes. Types of Organic reactions : Addition – electrophilic, nucleophilic and free radical. Substitution – electrophilic, nucleophilic and free radical. Elimination- Examples (mechanism not required). Mid -1 yes SEP alkenes. Addition of hydrogen-heat of hydrogenation and stability of alkenes. Addition of halogen and its mechanism. Addition of HX, Markonikov's rule, Mid -1 yes		• • • • • • • • • • • • • • • • • • • •	Assign	yes	Seminar	yes	
Resonance or Mesomeric effect, application to (a) acidity of phenol, and (b) acidity of carboxylic acids. Hyper conjugation and its application to stability of carbonium ions, Free radicals and alkenes, carbanions, carbenes and nitrenes. Mid -1 yes Types of Organic reactions : Addition – electrophilic, nucleophilic and free radical. Substitution – electrophilic, nucleophilic and free radical. Elimination-Examples (mechanism not required). Mid -1 yes SEP Acyclic Hydrocarbons: Alkenes-Preparation of alkenes. Addition of hydrogen-heat of hydrogen and its mechanism. Addition of HX, Markonikov's rule, Mid -1 yes	AUG		-	•		5	
acidity of phenol, and (b) acidity of carboxylic acids. Hyper conjugation and its application to stability of carbonium ions, Free radicals and alkenes, carbanions, carbenes and nitrenes. Types of Organic reactions : Addition – electrophilic, nucleophilic and free radical. Substitution – electrophilic, nucleophilic and free radical. Elimination-Examples (mechanism not required). 2. Acyclic Hydrocarbons: Alkenes-Preparation of alkenes. Addition of hydrogenation and stability of alkenes. Addition of halogen and its mechanism. Addition of HX, Markonikov's rule,							
Hyper conjugation and its application to stability of carbonium ions, Free radicals and alkenes, carbanions, carbenes and nitrenes.Mid -1 examsyesTypes of Organic reactions : Addition – electrophilic, nucleophilic and free radical. Substitution – electrophilic, nucleophilic and free radical. Elimination- Examples (mechanism not required).Mid -1 examples (mechanism not required).SEPalkenes. Addition of hydrogen-heat of hydrogenation and stability of alkenes. Addition of halogen and its mechanism. Addition of HX, Markonikov's rule,Mid -1 exams		, 11 , , ,					
carbonium ions, Free radicals and alkenes, carbanions, carbenes and nitrenes. exams Types of Organic reactions : Addition – electrophilic, nucleophilic and free radical. Substitution – electrophilic, nucleophilic and free radical. Elimination-Examples (mechanism not required). exams SEP alkenes. Addition of hydrogen-heat of hydrogenation and stability of alkenes. Addition of halogen and its mechanism. Addition of HX, Markonikov's rule, exams			Mid -1	yes			
scarbenes and nitrenes. Types of Organic reactions : Addition – electrophilic, nucleophilic and free radical. Substitution – electrophilic, nucleophilic and free radical. Elimination- Examples (mechanism not required). 2. Acyclic Hydrocarbons: Alkenes-Preparation of alkenes. Addition of hydrogen-heat of hydrogenation and stability of alkenes. Addition of halogen and its mechanism. Addition of HX, Markonikov's rule,			exams	•			
Nucleophilic and free radical. Substitution – electrophilic, nucleophilic and free radical. Elimination- Examples (mechanism not required). 2. Acyclic Hydrocarbons: Alkenes-Preparation of alkenes. Addition of hydrogen-heat of hydrogenation and stability of alkenes. Addition of halogen and its mechanism. Addition of HX, Markonikov's rule,							
see electrophilic, nucleophilic and free radical. Elimination- Examples (mechanism not required). Examples (mechanism not required). 2. Acyclic Hydrocarbons: Alkenes-Preparation of alkenes. Addition of hydrogen-heat of hydrogenation and stability of alkenes. Addition of halogen and its mechanism. Addition of HX, Markonikov's rule,		Types of Organic reactions : Addition – electrophilic,					
SEP Examples (mechanism not required). 2. Acyclic Hydrocarbons: Alkenes-Preparation of alkenes. Addition of hydrogenation and stability of alkenes. Addition of halogen and its mechanism. Addition of HX, Markonikov's rule,		nucleophilic and free radical. Substitution –					
SEP 2. Acyclic Hydrocarbons: Alkenes-Preparation of alkenes. Addition of hydrogen-heat of hydrogenation and stability of alkenes. Addition of halogen and its mechanism. Addition of HX, Markonikov's rule,		electrophilic, nucleophilic and free radical. Elimination-					
SEP alkenes. Addition of hydrogen-heat of hydrogenation and stability of alkenes. Addition of halogen and its mechanism. Addition of HX, Markonikov's rule,		Examples (mechanism not required).					
and stability of alkenes. Addition of halogen and its mechanism. Addition of HX, Markonikov's rule,		2. Acyclic Hydrocarbons: Alkenes-Preparation of					
mechanism. Addition of HX, Markonikov's rule,	SEP						
addition of H ₂ O, HOX, H ₂ SO ₄ with mechanism and Assign		_ , ,	-				
addition of HBr in the presence of peroxide (anti-			ment	yes			
Markonikov's addition). Dienes-Types of dienes,							
reactions of conjugated dines-1,2 and 1,4 addition of		8 0					
HBr to 1,3- butadiene and Diel's – Alder reaction. :		· · ·					
Alkynes-Preparation by dehydrohalogenation of							
dihalides, dehalogenation of tetrahalides, Properties;							
Acidity of acetylenic hydrogen (formation of Metal							
acedtylides). Preperation of higher acetylenes, Metal							
ammonia reductions Physical properties. Chemical		· 1 1					
reactivity-electrophilic addition of X_2 , HX , H_2O							
(Tautomerism), Oxidation with KMnO ₄ , OsO ₄ , reduction							
and Polymerisation reaction of acetylene.		•					
3. Alicyclic hydrocarbons (Cycloalkanes):							
Nomenclature, Preparation by Freunds methods, heating		Nomenciature, Preparation by Freunds methods, heating					

	dicarboxylic metal salts. Properties - reactivity of					
	cyclopropane and cyclobutane by comparing with	Accian	NOC			
		Assign	yes			
	alkanes, Stability of cycloalkanes-Baeyer's strain theory,	ment				
	Sachse and Mohr predictions and Pitzer's strain theory.					
	Conformational structures of cyclobutane, cyclopentane,					
OCT	cyclohexane.					
UCI	4. Benzene and its reactivity: Concept of resonance,					
	resonance energy. Heat of hydrogenation, heat of	II -Mid	yes			
	combustion of Benezene, mention of C-C bond lengths					
	and orbital picture of Benzene. Concept of aromaticity-					
	aromaticity (definition), Huckel's rule-application to					
	Benzenoid (Benzene, Napthalene) and Non-Benzenoid					
	compounds (cyclopropenyl cation, cyclopentadienyl					
	anion and tropylium cation). Reactions-General					
	mechanism of electrophilic substitution, mechanism of					
	nitration. Friedel Craft's alkylation and acylation.					
	Orientation of aromatic substitution – Definition of					
	ortho, para and meta directing groups. Ring activating					
	and deactivating groups with examples (Electronic					
	interpretation of various groups like NO ₂ and Phenolic).					
	Orientation of (i). Amino, methoxy and methyl groups	Sem	yes			
	(ii). Carboxy, nitro, nitrile, carbonyl and Sulfonic acid	end	5			
	groups. (iii). Halogens (Explanation by taking	exams				
	minimum of one example from each type).	Chamb				
	(Physical Chemistry)					
NOV	Gaseous state: Compression factors, deviation of real					
	gases from ideal behavior. Vander Waal's equation of					
	state. P-V Isotherms of real gases, Andrew's isotherms of					
	carbon dioxide, continuity of state. Critical phenomena.					
		Assign				
	1	-	Ves			
	1 0 1	mont	,05			
	effect, Equeraction of gases (1) Ender's method (11)					
	The vander Waal's equation and the critical state. Law of corresponding states.Relationship between critical constants and vander Waal's constants. Joule Thomson effect, Liquefaction of gases (i) Linde's method (ii)	Assign ment	yes			

D	DEC	Claude's method Liquid state: Structural differences between solids, liquids and gases. Liquid crystals, the mesomorphic state. Classification of liquid crystals into Smectic and Nematic. Differences between liquid crystal and solid/liquid. Application of liquid crystals as LCD devices. Solid state: Symmetry in crystals. Law of constancy of interfacial angles. The law of rationality of indices. The law of symmetry. Definition of lattice point, space lattice, unit cell. Bravis lattices and crystal systems. X- ray diffraction and crystal structure. Bragg's law. Determination of crystal structure by Bragg's method. Indexing of planes and structure of NaCl and KC1 crystals. Defects in crystals. Stoichiometric and non- stoichiometric defects. Solutions: Liquid-liquid - ideal solutions, Raoult's law. Ideally dilute solutions, Henry's law. Non-ideal solutions. Vapour pressure - composition and vapour pressure- temperature curves. Azeotropes-HCl-H ₂ O, ethanol-water systems and fractional distillation.	Assign ment	yes	Seminar	yes	
J	AN	 Partially miscible liquids-phenol-water, trimethylamine-water, nicotine-water systems. Effect of impurity on consulate temperature. Immiscible liquids and steam distillation. Nernst distribution law. Calculation of the partition coefficient. Applications of distribution law. (General Chemistry) Surface chemistry: liquids (sols), preparation, purification, properties - kinetic, optical, electrical. Stability of colloids, Hardy-Schulze law, protective colloid. Liquids in liquids (emulsions) preparation, properties, uses. Liquids in solids (gels) preparation, uses. 	Mid -1 exams	yes	Pongal celebrati ons Janma bhoomi program	yes yes	

FEB	Adsorption:Physicaladsorption,chemisorption.Freundlisch,Langmuiradsorptionisotherms.Applications of adsorptionChemical Bonding:Valence bond theory, hybridization,VBtheory as applied toClF3, Ni(CO)4, Molecularorbitaltheory-LCAOmethod, construction of M.O.diagramsfor homo-nuclear and hetero-nuclear diatomic	Assign ment	yes	Quiz	yes
MAR	elements)- Definition of enantiomers and diastereomers – Explanation of optical isomerism with examples Glyceraldehyde, Lactic acid, Alanine, Tartaric acid, 2,3-	Mid-II Sem	yes	Guest lecture	yes
	dibromopentane. D,L and R,S configuration methods and E,Z- configuration with examples.	end exams	yes		

		SRI Y.N.COLLEGE (Autonomous)			75						
		ANNUAL CURRICULAR PLAN		018-2019							
Nan	ne of the	Lecturer: Dr. B. Ananda Kumar, Ch Srinivasa Rao, Paper - III Class: II B	Additional		Curricu	lar activity			Co-currio	cular activit	y
S. No	Month	Syllabus-Topic	inputs Value Addition	Activity	Hours allotted	Whether Conducted	If not alternate days	Activity	Hours allotted	Whether Conducted	If not alternate days
	JUN	Inorganic Chemistry)	Redox								
		Chemistry of d-block elements: Characteristics of d-block elements with special	potential								
		reference to electronic configuration, variable valence, magnetic properties, catalytic	, colour								
		properties and ability to form complexes. Stability of various oxidation states.	and d-d								
		Comparative treatment of second and third transition series with their 3d analogues.	transitio								
		Chemistry of f-lock elements: Chemistry of lanthanides-electronic structure,	ns								
		oxidation states, lanthanide contraction, consequences of lanthanide contraction,									
		magnetic properties. Chemistry of actinides – electronic configuration, oxidation states, actinide contraction, comparison of lanthnides with actinides.									
		Theories of bonding in metals: Metallic properties and its limitations, Valence bond		BOS		Yes					
	JUL	theory, Free electron theory, Explanation of thermal and electrical conductivity of		DOS		105					
		metals, limitations, Band theory, formation of bands, explanation of conductors,		Assign							
		semiconductors and insulators.		ment		Yes					
		Metal carbonyls and related compounds – EAN rule, classification of metal									
		carbonyls, structures and shapes of metal carbonyls of V, Cr, Mn, Fe, Co and Ni.									
		(Organic Chemistry)									
		Halogen compounds: Nomenclature and classification of alkyl (into primary,									
		secondary, tertiary), aryl, aralkyl, allyl, vinyl, benzyl halides. Chemical Reactivity,									
	AUG	formation of RMgX Nucleophilic aliphatic substitution reaction- classification into						~ .			
	AUG	S_N1 and S_N2 . Energy profile diagram of S_N1 and S_N2 reactions. Stereochemistry of S_N2		Assign		Yes		Semin		Yes	
		(Walden Inversion) $S_N 1$ (Racemisation). Explanation of both by taking the example of		ment				ar			
		optically active alkyl halide – 2bromobutane. Ease of hydrolysis – comparision of									
		alkyl, benzyl, alkyl, vinyl and aryl halides. Hydroxy compounds: Nomenclature and classification of hydroxy compounds.									
		Alcohols: Preparation with hydroboration reaction, Grignard synthesis of alcohols.									
		Phenols: Preparation i) from diazonium salt, ii) from aryl sulphonates, iii) from									
		cumene. Physical properties- Hydrogen bonding (intermolecular and intramolecular).									

SEP	Effect of hydrogen bonding on boiling point and solubilitiy in water. Chemical properties: acidic nature of phenols. formation of alkoxides/phenoxides and their reaction with RX. replacement of OH by X using PCl ₅ , PCl ₃ , PBr ₃ , SOCl ₂ and with HX/ZnCl ₂ . esterification by acids (mechanism). dehydration of alcohols. oxidation of alcohols by CrO ₃ , KMnO ₄ special reaction of phenols: Bromination, Kolb-Schmidt reaction, Riemer-Tiemann reaction, Fries rearrangement, azocoupling. Identification of alcohols by oxidation with KMnO ₄ , ceric ammonium nitrate, lucas reagent and phenols by reaction with FeCl ₃ . Polyhydroxy compounds: Pinacol-Pinacolone rearrangement. Carbonyl compounds: Nomenclature of aliphatic and aromatic carbonyl compounds,	Crossed Aldol condens ation	Assign ment	Yes	Semin ar	Yes	
SEP			Assign ment	Yes		Yes	
	differences in the acidities of aromatic and aliphatic acids. Chemical properties: Reactions involving H, OH and COOH groups- salt formation, anhydride formation, acid chloride formation, amide formation and esterification (mechanism). Degradation of carboxylic acids by Huns-Diecker reaction, decarboxylation by Schimdt reaction, Arndt-Eistert synthesis, halogenation by Hell-Volhard- Zelinsky reaction.						

Active methylene compounds: Acetoacetic esters: preparation by Claisen	Mid	Yes		
condensation, keto-enol tautomerism. Acid hydrolysis and ketonic hydrolysis.	sem			
Preparation of a) monocarboxylic acids b) dicarboxylic acids. Reaction with urea				
Malonic ester: preparation from acetic acid. Synthetic applications: Preparation of a)				
monocarboxylic acids (propionic acid and n-butyric acid). b) dicarboxylic acids				
(succinic acid and adipic acid). c) α,β-unsaturated carboxylic acids (crotonic acid).				
Reaction with urea.				

		SRI Y.N.COLLEGE (Autonomous)	NARSAP	UR-53427	'5						
		ANNUAL CURRICULAR PLAN									
Name	of the	Lecturer: Ch. Srinivasa Rao Paper – IV	Class: II	B.Sc				-			
			Additional		Curricu	lar activity	-	(Co-currio	cular activit	y
S. No	Month	Syllabus-Topic	inputs Value Addition	Activity	Hours allotted	Whether Conducted	If not alternate days	Activity	Hours allotted	Whether Conducted	If not alternate days
. N	VOV	<u>PHYSICAL CHEMISTRY</u> Dilute solutions: Colligative properties. Raoult's law, relative lowering of vapour		Assign ment		Yes					
		pressure, its relation to molecular weight of non-volatile solute. Elevation of boiling									
		point and depression of freezing point. Derivation of relation between molecular									
		weight and elevation in boiling point and depression in freezing point. Experimental									
		methods of determination. Osmosis, osmotic pressure, experimental determination.									
		Theory of dilute solutions. Determination of molecular weight of non-volatile solute									
		from osmotic pressure. Abnormal Colligative properties- Van't Hoff factor.									
		2. Electrochemistry-I: Specific conductance, equivalent conductance. Variation of equivalent conductance with dilution. Migration of ions, Kohlrausch's law. Arrhenius									
		theory of electrolyte dissociation and its limitations. Ostwald's dilution law. Debye-									
		Huckel-Onsagar's equation for strong electrolytes (elementary treatment only).						Enviro			
		Definition of transport number, determination by Hittorfs method. Application of						nment		yes	
Т	DEC	conductivity measurements- conductometric titrations.						al		5-~	
-	-20	3. Electrochemistry-II: Single electrode potential, sign convention, Reversible and						awarn			
		irreversible cells Nernst Equation- Reference electrode, Standard Hydrogen electrode,						ess			
		calomel electrode, Indicator electrode, metal - metal ion electrode, Inert electrode,									
		Determination of EMF of cell, Applications of EMF measurements - Potentiometric									
		titrations.									
		4. Phase rule : Concept of phase, components, degrees of freedom. Thermodynamic		Mid		Yes					
J	AN	Derivation of Gibbs phase rule. Phase equilibrium of one component system - water system. Phase equilibrium of two- component system, solid-liquid equilibrium.		sem-I		res					
		Simple eutectic diagram of Pb-Ag system, simple eutectic diagram, desilverisation of		SCIII-1							
		lead., NaCl-Water system, Freezing mixtures.									
		SPECTROSCOPY									
		Spectrophotometry: General features of absorption - Beer-Lambert's law and its						Field		Yes	
		limitations, transmittance, Absorbance, and molar absorptivity. Single and double						trip			

FEB	beam spectrophotometers. Application of Beer-Lambert law for quantitative analysis		Assign	Yes			ĺ
	of 1. Chromium in K ₂ Cr ₂ O ₇ 2. Manganese in Manganous sulphate		ment				
	Electronic spectroscopy: Interaction of electromagnetic radiation with molecules and						
	types of molecular spectra. Energy levels of molecular orbitals (σ , π , n). Selection rules						
	for electronic spectra. Types of electronic transitions in molecules effect of						l
	conjugation. Concept of chromophore and auxochrome.						l
	Infra red spectroscopy: Different Regions in Infrared radiations. Modes of vibrations						l
	in diatomic and polyatomic molecules. Characteristic absorption bands of various		Assign	yes			l
	functional groups. Interpretation of spectra-Alkanes, Aromatic, Alcohols carbonyls,		ment				l
MAR	and amines with one example to each.				Quiz	Yes	l
		NMR					l
	NMR splitting of signals - spin-spin coupling, coupling constants. Applications of						l
	NMR with suitable examples - ethyl bromide, ethanol, acetaldehyde, 1,1,2-tribromo						
	ethane, ethyl acetate, toluene and acetophenone.						l

		SRI Y.N.COLLEGE (Autonomous)	NARSAP	UR-53427	'5						
		ANNUAL CURRICULAR PLAN									
Nan	ne of the	Lecturer: Dr. S.B Ronald , M. Sri Rama Devi Paper - V	(Class: III l	B.Sc						
			Additional		Curricu	lar activity			Co-curri	cular activit	ty
S. No	Month	Syllabus-Topic	inputs Value Addition	Activity	Hours allotted	Whether Conducted	If not alternate days	Activity	Hours allotted	Whether Conducted	If not alternate days
	JUN	(Inorganic Chemistry) Coordination Chemistry: IUPAC nomenclature, bonding theories – review of Werner's theory and Sidgwick's concept of coordination, Valence bond theory, geometries of coordination numbers 4-tetrahedral and square planar and 6-octahedral and its limitations, crystal filed theory, splitting of d-orbitals in octahedral, tetrahedral and square-planar complexes – low spin and high spin complexes – factors affecting crystal-field splitting energy, merits and demerits of crystal-field theory. Isomerism in coordination compounds – structural isomerism and stereo isomerism, stereochemistry of complexes with 4 and 6 coordination numbers. Spectral and magnetic properties of metal complexes: Electronic absorption		Assign ment BOS		Yes					
	JUL	spectral and magnetic properties of metal complexes. Electionic absorption spectrum of $[Ti(H_2O)_6]^{3+}$ ion. Types of magnetic behavior, spin-only formula, calculation of magnetic moments, experimental determination of magnetic susceptibility – Gouy method. Stability of metal complexes: Thermodynamic stability and kinetic stability, factors affecting the stability of metal complexes, chelate effect, determination of composition of complex by Job's method and mole ratio method.		Assign		Yes					
	AUG	(Organic Chemistry) Nitrogen compounds: <u>Nitro alkanes</u> : Nomenclature and classification-nitro hydrocarbons, structure -Tautomerism of nitroalkanes leading to aci and keto form, Preparation of Nitroalkanes, reactivity -halogenation, reaction with HONO (Nitrous acid), Nef reaction and Mannich reaction leading to Micheal addition and reduction. <u>Amines:</u> (aliphatic and aromatic)- Nomenclature, Classification into 1°, 2°, 3° Amines and Quarternary ammonium compounds. Preparative methods 1. Ammonolysis of alkyl halides 2. Gabriel synthesis 3. Hoffman's bromamide reaction (mechanism). Reduction of Amides and Schmidt reaction. Physical properties and basic character - Comparative basic strength of Ammonia, methyl amine, dimethyl		Guest lecture Assign ment		Yes					

SEP	amine, trimethyl amine and aniline - comparative basic strength of aniline, N- methylaniline and N,N-dimethyl aniline (in aqueous and non-aqueous medium), steric effects and substituent effects. Chemical properties: a) Alkylation b) Acylation c) Carbylamine reaction d) Hinsberg separation e) Reaction with Nitrous acid of 1°, 2°, 3° (Aliphatic and aromatic amines). Electrophillic substitution of Aromatic amines – Bromination and Nitration. Oxidation of aryl and Tertiary amines, Diazotization. Cyanides and Isocyanides: Nomenclature (aliphatic and aromatic) Structure. Preparation of Cyanides from: a) Alkyl halides b) from amides c) from aldoximes. Preparation of Isocyanides from: Alkyl halides and Amines. Chemical properties of Cyanides and Isocyanides: a) hydrolysis b) addition of Grignard reagent c) reduction d) oxidation.	Nomenc lature of Hetero cycles ring systems	Study project Assign ment	Yes		
OCT	(Physical chemistry) Thermodynamics: The first law of thermodynamics-statement, definition of internal energy and enthalpy. Heat capacities and their relationship. Joule-Thomson effect- coefficient. Calculation of w, for the expansion of perfect gas under isothermal and adiabatic conditions for reversible processes. State function. Temperature dependence of enthalpy of formation-Kirchoff s equation. Second law of thermodynamics. Different Statements of the law. Carnot cycle and its efficiency. Carnot theorem. Concept of entropy, entropy as a state function, entropy changes in reversible and irreversible processes. Entropy changes in spontaneous and equilibrium processes.		Assign ment Mid-1	Yes Yes		

		SRI Y.N.COLLEGE (Autonomous)) NARSAP	UR-53427	75						
		ANNUAL CURRICULAR PLAI									
Nar	ne of the	Lecturer: Ch RVR Prasad Paper - VI C	Class: III B	.Sc							
~			Additional		Curricu	lar activity			Co-currio	cular activit	y
S. No	Month	Syllabus-Topic	inputs Value Addition	Activity	Hours allotted	Whether Conducted	If not alternate days	Activity	Hours allotted	Whether Conducted	If not alternate days
	AUG	 (Inorganic Chemistry) Reactivity of metal complexes: Labile and inert complexes, ligand substitution reactions – SN₁ and SN₂, substitution reactions of square planar complexes – Trans effect and applications of trans effect. (Organic Chemistry) Heterocyclic Compounds: Introduction and definition: Simple five membered ring compounds with one hetero atom Ex. Furan. Thiophene and pyrrole - Aromatic character – Preparation from 1,4,- dicarbonyl compounds, Paul-Knorr synthesis. Properties : Acidic character of pyrrole - electrophillic substitution at 2 or 5 position, Halogenation, Nitration and Sulphonation under mild conditions - Diels Alder reaction in furan. Pyridine – Structure - Basicity - Aromaticity - Comparison with pyrrole - one method of preparation and properties - Reactivity towards Nucleophilic substitution reaction. Carbohydrates: Monosaccharides: (+) Glucose (aldo hexose) - Evidence for cyclic structure of glucose (some negative aldehydes tests and mutarotation) - Proof for the ring size (methylation, hydrolysis and oxidation reactions) - Pyranose structure (Haworth formula and chair conformational formula). (-) Fructose (ketohexose) - Evidence of 2 - ketohexose structure (formation of pentaacetate, formation of cyanohydrin its hydrolysis and reduction by HI). Cyclic structure for fructose (Furanose structure and Haworth formula) - osazone formation from glucose and fructose – Definition of anomers with examples. Interconversion of Monosaccharides: Aldopentose to Aldohexose (Arabinose to D- Glucose, D-Mannose) (Kiliani - Fischer method). Epimers, Epimerisation - Lobry de bruyn van Ekenstein rearrangement. Aldohexose to Aldopentose (D-Glucose to D- 	Addition	Guest lecture Study project Mid-1 Assign ment	allotted	ConductedYesYesYesYes			allotted	Conducted	
		Arabinose) by Ruff degradation. Aldohexose to Ketohexose [(+) Glucose to D- Fructose] and Ketohexose to Aldohexose (Fructose to Glucose) Amino acids and proteins: Introduction: Definition of Amino acids, classification of		Assign ment		Yes					

OCT	Amino acids into alpha, beta, and gamma amino acids. Natural and essential amino acids - definition and examples, classification of alpha amino acids into acidic, basic and neutral amino acids with examples. Methods of synthesis: General methods of synthesis of alpha amino acids (specific examples - Glycine, Alanine, valine and leucine) by following methods: a) from halogenated carboxylic acid b) Malonic ester synthesis c) strecker's synthesis. Physical properties: Zwitter ion structure - salt like character - solubility, melting points, amphoteric character, definition of isoelectric point. Chemical properties: General reactions due to amino and carboxyl groups - lactams from gamma and delta amino acids by heating peptide bond (amide linkage). Structure and nomenclature of peptides and proteins.	Mid-2		yes						
-----	---	-------	--	-----	--	--	--	--	--	--

		ANNUAL CURRICULAR PLAN	N-YEAR 2	018-2019							
Nar	ne of the	Lecturer: Dr. S.B Ronald,Elective Paper :	С	lass: III B							
~			Additional		Curricu	lar activity		(Co-curric	cular activit	y
S. No	Month	Syllabus-Topic	inputs Value Addition	Activity	Hours allotted	Whether Conducted	If not alternate days	Activity	Hours allotted	Whether Conducted	If not alternate days
	NOV	UNIT-I : Introduction: Concept of Environmental chemistry-Scope and importance of environment in now a days-Nomenclature of environmental chemistry- Segments of environment-Natural resources- Renewable Resources-Solar and biomass energy and Nonrenewable resources-Thermal power and atomic energy-Reactions of atmospheric oxygen and Hydrological cycle. UNIT-II :		Assign ment		Yes		Semin ar		yes	
	DEC	Air Pollution: Definition-Sources of air pollution-Classification of air pollution-Acid rain-Photochemical smog-Green house effect- Formation and depletion of ozone-Bhopal gas disaster-Controlling methods of air pollution. UNIT-III :	Macrom	Assign							
	JAN	Water pollution: Unique physical and chemical properties of water-water quality and criteria for finding of water quality-Dissolved oxygen-BOD, COD, Suspended solids, total dissolved solids, alkalinity-Hardness of water-Methods to convert temporary hard water into soft water-Methods to convert permanent hard water into soft water-eutrophication and its effects-principal wastage treatment-Industrial waste water	olecules	ment		Yes					
	Feb	treatment. UNIT-IV : Chemical ToxicologyToxic chemicals in the environment-effects of toxic chemicals- cyanide and its toxic effects-pesticides and its biochemical effects-toxicity of lead,		Assign ment		Yes		Field			
	Mar	mercury, arsenic and cadmium. UNIT-V : Ecosystem and biodiversity Ecosystem : Concepts-structure-Functions and types of ecosystem-Abiotic and biotic components-Energy flow and Energy dynamics of ecosystem Food spains Food web Tranic levels Biogeoschemical evelop		Quiz		Yes		Trip			
		dynamics of ecosystem-Food chains-Food web-Tropic levels-Biogeochemical cycles (carbon, nitrogen and phosporus) Biodiversity: Definition-level and types of biodiversity-concept- significance-magnitude and distribution of biodiversity-trends-biogeographical classification of India-biodiversity at national, global and regional level.		Guest lecture		yes					

Jan	e of the	ANNUAL CURRICU Lecturer: Ch.RVR Prasad		CE-1	2017		(Class: III B.	.Sc	
			Additional		Curricular	activity				lar activity
S. No	Month	Syllabus-Topic	inputs Value Addition	Activity	Hours allotted	Whether Conducted	If not alternate days	Activity	Hours allotted	Whether Conducted
	Nov	UNIT – I : Review of energy sources (renewable and non-renewable) – classification of fuels and their calorific value. Coal: Uses of Coal (fuel and non fuel) in various industries, its composition, carbonization of coal - coal gas, producer gas and water gas – composition and uses – fractionation of coal tar – uses of coal tar based chemicals, requisites of a good metallurgical coke, coal gasification (Hydro gasification and					č			
	Dec	catalytic gasification) coal liquefaction and solvent refining. UNIT-II: Petroleum and petrol chemical industry: Composition of crude petroleum, refining and different types of petroleum products and their		Assignment		Yes				
		applications. UNIT-III: Fractional distillation (principle and process), cracking(Thermal and catalytic cracking). Reforming petroleum and non petroleum fuels (LPG, CNG, LNG, bio-gas), fuels derived from		Seminar		Yes				
	Jan	biomass, fuel from waste, synthetic fuels (gaseous and liquids), clear fuels, petro chemicals: vinyl acetate, propylene oxide, isoprene, butadiene, toluene and its derivative xylene.		Assignment		Yes				
	Feb	UNIT-IV: Lubricants: Classification of lubricants, lubricating oils (conducting and non-conducting), solid and semi solid lubricants, synthetic lubricants. Properties of lubricants (viscosity index, cloud point, pore point) and their determination. Applications of lubricants. UNIT-V		Assignment		Yes		Work shop		Yes
	Mar	Batteries: Primary and secondary batteries, battery components and their role, Characteristics of Battery. Working of following batteries: Pb acid, Li-Battery, Solid state electrolyte battery. Fuel cells, Solar cell and polymer cell		Seminar		Yes		Quiz		yes

	SRI Y.N.COLLEGE (Autonomous) ANNUAL CURRICULAR PLAN			3						
me of th	e Lecturer: Ch. Udayabhaskara Rao		CE-2				Class: II	I B.Sc		
		Additional		Curricu	lar activity		(Co-curric	cular activit	y
Month	Syllabus-Topic	inputs Value Addition	Activity	Hours allotted	Whether Conducted	If not alternate days	Activity	Hours allotted	Whether Conducted	If not alternate days
Nov	<u>UNIT - I</u>					, i				
	Recapitulation of s- and p-Block Elements Periodicity in s- and p-block elements									
	with respect to electronic configuration, atomic and ionic size, ionization enthalpy,									
	electronegativity (Pauling, Mulliken and Alfred – Rochow scales). Allotropy in C, S,									
	and P. Oxidation states with reference to elements in unusual and rare oxidation states									
	like carbides and nitrides), inert pair effect, diagonal relationship and anomalous									
	behaviour of first member of each group.									
Dec	<u>UNIT – II</u>									
	Silicate Industries									
	Glass: Glassy state and its properties, classification(silicate and non-silicate glasses).		Assign							
	Manufacture and processing of glass. Composition and properties of the following		ment		Yes					
	types of glasses: Soda lime glass, lead glass, armoured glass, safety glass, borosilicate									
	glass, fluorosilicate, coloured glass, photosensitive glass.		Seminar		Yes					
	Ceramics: Important clays and feldspar, ceramic, their types and manufacture. High									
Jan	technology ceramics and their applications, superconducting and semiconducting									
	oxides, fullerenes, carbon nanotubes and carbon fibre.									
	Cements: Classification of cement, ingredients and their role, Manufacture of cement		Assign		Yes					
	and the		ment							
	setting process, quick setting cements.									
	<u>UNIT – III</u>									
	Fertilizers:									
	Different types of fertilizers. Manufacture of the following fertilizers: Urea,									
	ammonium nitrate, calcium ammonium nitrate, ammonium phosphate, polyphosphate,									
	superphosphate, compound and mixed fertilizers, potassium chloride, potassium									
	sulphate.									

Feb	UNIT – IVSurface Coatings:Objectives of coatings surfaces, preliminary treatment of surface, classification of surface coatings. Paints and pigments-formulation, composition and related properties.Oil paint, Vehicle, modified oils, Pigments, toners and lakes pigments, Fillers, Thinners, Enamels, emulsifying agents. Special paints (Heat retardant, Fire retardant, Eco-friendly paint, Plastic paint), Dyes, methods of dying, classification of dyes, Wax polishing, Water and Oil paints, additives, Metallic coatings (electrolytic and electrolysis), metal spraying and anodizing.	Assign ment	Yes	Work shop	Yes	
Mar	 UNIT – V Alloys: Classification of alloys, ferrous and non-ferrous alloys, Specific properties of elements in alloys. Manufacture of Steel (removal of silicon decarbonization, demanganization, desulphurization dephosphorisation) and surface treatment (argon treatment, heat treatment, nitriding, carburizing). Composition and properties of different types of steels. Chemical explosives: Origin of explosive properties in organic compounds, preparation and explosive properties of lead azide, PETN, cyclonite (RDX). Introduction to rocket propellants. 	Seminar	Yes	Quiz	Yes	

Nat	ne of the	ANNUAL CURRIC		<u>N-YEAR 2018</u> CE-3	3-2019			Class: III B	Sc		
Ital			Additional		Curricula	r activity				lar activity	
S. No	Month	Syllabus-Topic	inputs Value Addition	Activity	Hours allotted	Whether Conducted	If not alternate days	Activity	Hours allotted	Whether Conducted	If not alternate days
	NOV	Analysis of soaps: moisture and volatile matter, combined alkali, total fatty matter, free alkali, total fatty acid, sodium silicate and chlorides. Analysis of paints : Vehicle and pigments, Barium Sulphate, total lead, lead chromate, iron pigments, zinc chromate.									ĭ
	DEC	UNIT- II Analysis of oils: saponification value, iodine value, acid value, ester value, bromine value, acetyl value.		Assignment		Yes					
	JAN	Analysis of industrial solvents like benzene, acetone, methanol and acetic acid, Determination of methoxyl and N-methyl groups. UNIT-III Analysis of fertilizers: urea, NPK fertilizer, super phosphate. Analysis of DDT, BHC, endrin, endosulfone, malathion, parathion. UNIT -IV		Seminar		Yes					
		Analysis of starch, sugars, cellulose and paper. Gas analysis: carbon dioxide, carbon monoxide, oxygen, hydrogen, saturated hydro carbons, unsaturated hydrocarbons, nitrogen, octane number, cetane number. Analysis of Fuel gases like: water gas, producer gas, kerosene (oil) gas. Ultimate analysis :carbon, hydrogen, nitrogen, oxygen, phosphorus and sulfur.		Assignment		Yes		Work shop		Yes	
	FEB	UNIT - V Analysis of Complex materials: Analysis of cement - loss on ignition, insoluble residue, total silica, sesqui oxides, lime, magnesia, ferric oxide, sulphuric anhydride.		Assignment		Yes		Tour		Yes	
	MAR	Analysis of glasses - Determinaiton of silica, sulphur barium, arsenic, antimony, total R_2O_3 , calcium, magnesium, total alkalies, aluminium, chloride, floride.		Seminar		Yes		Quiz		Yes	