		SRI Y.N.COLLEGE (A ANNUAL CURRICI		, ·		•					
I B.Sc	., Par	per – I, Ch. Udaya Bhaskar Rao, Ch Sujitha		11-1 LAN 2020	-2021						
	, 1		Additional	C	urricular	activity		(Co-curricu	ılar activity	
S. No M	Ionth	Syllabus-Topic	inputs Value Addition	Activity	Hours allotted	Whether Conducted	If not alternate days	Activity	Hours allotted	Whether Conducted	If not alternate days
Feb	b-21	Chemistry of p-block elements :									
		Group -13: Preparation and structure of Diborane and Borazine.	Hydraze	Orientation		Conducted					
		Group -14: Preparation, classification and uses of silicones.	ne and Hydroxy	course Bridge		Conducted					
		Group-15: Preparation and structures of Phosphonitrilic halides	1 amine	course							
		{(PNCl ₂) _n where n=3,4}									
		Group -16: Oxides and Oxoacids of sulphur (structures only)									
		Group -17: Strutures of Inter halogen compounds and pseudo halogens.									
Ma	r-21	Chemistry of d-block elements : Characteristics of d-block elements with special reference to electronic configuration, variable valence, magnetic properties, catalytic properties and ability to form complexes. Stability of various oxidation states. Chemistry of f-block elements:		Assignment		Conducted					
		Chemistry of lanthanides - electronic structure, oxidation states,									
		lanthanide contraction, consequences of lanthanide contraction,									
		magnetic properties. Chemistry of actinides - electronic configuration,									
		oxidation states, actinide contraction, comparison of lanthanides and									
		actinides.									

Apr-21	Theories of bonding in metals:	Assignment	Conducted			
	Valence bond theory, Free electron theory, Explanation of thermal and			Student seminars	Conducted	
	electrical conductivity of metals based on these theories, Band theory-			5		
	formation of bands.					
	<u>UNIT-I (Physical Chemistry)</u>					
	Solid state:					
May-21	Symmetry in crystals. Law of constancy of interfacial angles. The law	Assignment	Conducted			
	of rationality of indices. The law of symmetry. Miller indices,					
	Definition of lattice point, space lattice, unit cell. Derivation of Bragg's					
	equation. Defects in crystals. Stoichiometric and non-stoichiometric					
	defects.					
Jun-21	Gaseous state:					
	Vander Waal's equation of state. Critical phenomena. Relationship					
	between critical constants and vanderWaal's constants. Law of					
	corresponding states. Joule Thomson effect.					
	Liquid state:					
	Liquid crystals, the mesomorphic state. Classification of liquid crystals					
	into Smectic and Nematic. Differences between liquid crystal and					
	solid/liquid. Application of liquid crystals as LCD devices.	Assignment	Conducted			

•	[ul-21	Solutions:	Assignment	Conducted			
		Liquid-liquid - ideal solutions, Raoult's law. Ideally dilute solutions,		Conducted			
		Henry's law. Azeotropes-HCl-H2O, ethanol-water systems. Partially					
		miscible liquids- phenol-water system. Effect of impurity on consulate			Student	Conducted	
		temperature. Nernst distribution law. Applications of distribution law.			seminars	Conductor	
		Ionic equilibrium:					
		Ionic product, common ion effect, solubility and solubility product.					
		Calculations based on solubility product.					
		Dilute solutions					
		Colligative properties- Relative lowering of vapour pressure, Osmotic					
		pressure, Elevation of boiling point and depression of freezing point.					
		Experimental methods for determination of depression in freezing point					
		and osmotic pressure, Abnormal Colligative properties					
	Aug-21						
			Mid Exams	Conducted			

		SRI Y.N.COLLEGE (A		//		5					
IR	Sc Pan	ANNUAL CURRICU er – II, Name of the lecturer: Ch Sujitha	ULAR PLA	N-YEAR 2020	0-2021						
	эс., 1 ар	er – II, Name of the recturer. En Sujitha	Additional	(Curricula	r activity		(Co-curricu	lar activity	
S. No	Month	Syllabus-Topic	inputs Value Addition	Activity	Hours allotted	Whether Conducted	If not alternate days	Activity	Hours allotted	Whether Conducted	If not alternate days
	Sep-21	 . <u>UNIT-IV(Organic Chemistrv)</u> Carbon-Carbon sigma bonds (Alkanes and Cycloalkanes) General methods of preparation of alkanes- Wurtz and Wurtz Fittig reaction, Corey House synthesis, physical and chemical properties of alkanes, Free radical substitutions(Halogenation). Conformational analysis of alkanes (Conformations, relative stability and energy diagrams of Ethane). General methods of preparation of cycloalkanes and relative stability, Baeyer strain theory. Carbon-Carbon pi Bonds (Alkenes and Alkynes) General methods of preparation, physical and chemical properties. Mechanism of E1,E2 reactions, Saytzeff and Hoffmann eliminations, Electrophilic additions, mechanism (Markownikoff /Anti markownikoff addition) with suitableexamples, Syn and anti-addition-addition of H2, X2, HX. Oxy mercuration – demercuration, hydroboration-oxidation, ozonolysis, hydroxylation, Diels alder reaction-1,2 and 1,4 addition reactions in conjugated dienes.Reactions of alkynes; acidity, electrophilic and nucleophilic additions, hydration to form carbonyl compounds. 		Assignment		Conducted		Student seminars		Conducted	
	Oct-21	Benzene and its reactivity Concept of aromaticity, Huckel's rule - application to Benzenoid)(Benzene, Naphthalene and NonBenzenoid compounds (cyclopropenylcation, cyclopentadienyl anion and tropyliumcation) Reactions - General mechanism of electrophilic aromatic substitution, mechanism of nitration, Friedel- Craft's alkylation and acylation. Orientation of aromatic substitution - ortho, para and meta directing groups. Ring activating and deactivating groups with examples		Assignment		Conducted					

Nov-21	 (Electronic interpretation of various groups like NO₂ and Phenolic). Orientation of (i) Amino, methoxy and methyl groups (ii) Carboxy, nitro, nitrile, carbonyl and sulphonic acid groups (iii) Halogens (Explanation by taking minimum of one example from each type) UNIT-IV(General Chemistry) Surface chemistry Colloids - Coagulation of colloids- Hardy-Schulze rule. Stability of colloids, Protection of Colloids, Gold number. Adsorption - Physical and chemical adsorption, Langmuir adsorption isotherm, applications of adsorption Chemical Bonding Valence bond theory, hybridization, VB theory as applied toClF3,Ni(CO)4, Molecular orbital theory -LCAO method, construction of M.O. Diagrams for homo-nuclear and hetero-nuclear diatomic molecules (N₂, O₂, CO and NO). 	Assignment	Conducted	Quiz Student seminars	Conducted	
	 HSAB Pearson's concept, HSAB principle & its importance, bonding in Hard-Hard and Soft-Soft combinations (applications). Stereochemistry of carbon compounds Optical isomerism: Optical activity- wave nature of light, plane polarised light, optical rotation and specific rotation. Chiral molecules- definition and criteria(Symmetry elements)- Definition of enantiomers and diastereomers – Explanation of optical isomerism with examples-Glyceraldehyde, Lactic acid, Alanine, Tartaric acid, 2,3-dibromopentane. D,L, R,S and E,Z- configuration with examples. Definition of Racemic mixture – Resolution of racemic mixtures (any 3techniques). 	Assignment Mid-Exams	Conducted			

<u>11 B.Sc., Pa</u>	aper – III, Name of the lecturer: Dr. B. Ananda Kumar, D. Suresh	Additional	C	urricular	activity			Co-curricu	lar activity	
S. Month	Syllabus-Topic	inputs Value Addition	Activity	Hours allotted	Whether Conducted	If not alternate days	Activity	Hours allotted	Whether Conducted	If not alternate days
Nov- 2020 Dec- 2020	 Chemistry of d-block elements: Characteristics of d-block elements with special reference to electronic configuration, variable valence, magnetic properties, catalytic properties and ability to form complexes. Stability of various oxidation states. Comparative treatment of second and third transition series with their 3d analogues. Theories of bonding in metals: Metallic properties and its limitations, Valence bond theory, Free electron theory, Explanation of thermal and electrical conductivity of metals, limitations, Band theory, formation of bands, explanation of 	Colour and d-d transitio ns	Assignment		Conducted		Quiz Industrial visit		Conducted	
	 conductors, semiconductors and insulators. 3. Metal carbonyls: EAN rule, classification of metal carbonyls, structures and shapes of metal carbonyls of V, Cr, Mn, Fe, Co and Ni. 4. Chemistry of f-block elements: Chemistry of lanthanides - electronic structure, oxidation states, lanthanide contraction, consequences of lanthanide contraction, 		Assignment		Conducted					

	magnetic properties. Chemistry of actinides - electronic configuration,				
	oxidation states, actinide contraction, comparison of lanthanides and				
	actinides.				
	<u>UNIT - II (Organic Chemistry)</u>				
Jan-2021	1. Halogen compounds				
	Nomenclature and classification of alkyl (into primary, secondary,	Assignment	Conducted		
	tertiary), aryl, aryl alkyl, allyl, vinyl, benzyl halides.				
	Nucleophilic aliphatic substitution reaction- classification into \mathbf{SN}^{I}				
	and sn^2 – reaction mechanism with examples – Ethyl chloride, t-butyl				
	chloride and optically active alkyl halide 2-bromobutane.				
	2. Hydroxy compounds				
	Nomenclature and classification of hydroxy compounds.				
	Alcohols: Preparation with hydroboration reaction, Grignard synthesis				
	of alcohols. Phenols: Preparation i) from diazonium salt, ii) from aryl				
	sulphonates, iii) from cumene. Physical properties- Hydrogen bonding	Guest	Conducted		
	(intermolecular and intramolecular). Effect of hydrogen bonding on	lecture			
	boiling point and solubility in water.				
	Identification of alcohols by oxidation with KMnO ₄ , Ceric ammonium				
	nitrate, Lucas reagent and phenols by reaction with FeCl ₃ .				
	Chemical properties:				
	a) Dehydration of alcohols.				
		7			

Γ		b) Oxidation of alcohols by CrO ₃ , KMnO ₄ .						
		c) Special reaction of phenols: Bromination, Kolbe-Schmidt reaction,		Mid-1 exams	Conducted			
		Riemer-Tiemann						
		reaction, Fries rearrangement, azocoupling, Pinacol-Pinacolone						
		rearrangement.						
	Feb-	3. Carbonyl compounds						
	2021	Nomenclature of aliphatic and aromatic carbonyl compounds, structure						
			Inter and	Assignment	Conducted			
		of the carbonyl group. Synthesis of aldehydes from acid chlorides,	Intra					
		synthesis of aldehydes and ketones using 1,3-dithianes, synthesis of	molecul ar aldol					
		ketones from nitriles and from carboxylic acids. Physical properties:	condens					
		Reactivity of carbonyl group in aldehydes and ketones.	ation					
		Nucleophilic addition reaction with a) NaHSO ₃ , b) HCN, c) RMgX, d)						
		NH ₂ OH, e)PhNHNH ₂ , f) 2,4 DNPH, g) Alcohols-formation of						
		hemiacetal and acetal. Base catalysed reactions: a) Aldol, b)				Student		
		Cannizzaro's reaction, c) Perkin reaction, d) Benzoin condensation, e)				seminars	Conducted	
		Haloform reaction, f) Knoevenagel reaction. Oxidation of aldehydes-					Conducted	
		Baeyer-Villiger oxidation of ketones.Reduction: Clemmensen reduction,						
		Wolf-Kishner reduction, MPV reduction, reduction with LiAlH ₄ and						
		NaBH ₄ . Analysis of aldehydes and ketones with a) 2,4-DNPH test, b)						
		Tollen's test, c) Fehling test, d) Schiff's test e) Haloform test (with						
		equation)						

		4. Carboxylic acids and derivatives]
		Nomenclature, classification and structure of carboxylic acids. Methods							
		of preparation by a) Hydrolysis of nitriles, amides b) Hydrolysis of							
		esters by acids and bases with mechanism c) Carbonation of Grignard							
		reagents. Special methods of preparation of aromatic acids by a)							
		Oxidation of side chain. b) Hydrolysis by benzotrichlorides. c) Kolbe			Student seminars		Cnducted		
		reaction.					Shauetou		
		Physical properties: Hydrogen bonding, dimeric association, acidity-	Assignment	Conducted					
		strength of acids with examples of trimethyl acetic acid and	0						
		trichloroacetic acid. Relative differences in the acidities of aromatic and							
		aliphatic acids.							
		Chemical properties: Reactions involving H, OH and COOH groups-							
		salt formation, anhydride formation, acid chloride formation, amide							
		formation and esterification (mechanism). Degradation of carboxylic							
		acids by Huns-Diecker reaction, decarboxylation by Schimdt reaction,							
		Arndt-Eistert synthesis, halogenation by Hell- Volhard- Zelinsky							
l		reaction.							
l	Mar-2021	5. Active methylene compounds							
l		Acetoacetic ester: keto-enol tautomerism, preparation by Claisen							
		condensation, Acid hydrolysis and ketonic hydrolysis. Preparation of a)							
		monocarboxylic acids. b) Dicarboxylic acids.							
	1				1	1		1	1

c) Reaction with urea				
Malonic ester: preparation from acetic acid.				
Synthetic applications: Preparation of a) monocarboxylic acids				
(propionic acid and n-butyric acid). b) Dicarboxylic acids (succinic	Mid-II	Conducted		
acid and adipic acid) c) α , β -unsaturated carboxylic acids (crotonic acid).	Exams	Conducted		
d) Reaction with urea.				
	Sem end exams	Conducted		

	ANNUAL CURRICU), NARSAPUR N-YEAR 2020							
II B.Sc., P	aper – IV Name of the lecturer: Dr. B. Ananda Kumar, Ch. Srinivasa R	ao								
G		Additional	C	urricular	activity		(Co-curricu	lar activity	
S. No Month	Syllabus-Topic	inputs Value Addition	Activity	Hours allotted	Whether Conducted	If not alternate days	Activity	Hours allotted	Whether Conducted	If not alternate days
Apr-	Spectrophotometry									
2021	General features of absorption - Beer-Lambert's law and its limitations,									
	transmittance, Absorbance, and molar absorptivity. Single and double		Assignment		Yes					
	beam spectrophotometers. Application of Beer-Lambert law for									
	quantitative analysis of 1. Chromium in K2Cr2O7 2. Manganese in									
	Manganous sulphate									
	Electronic spectroscopy:						Student		yes	
May-	Interaction of electromagnetic radiation with molecules and types of						seminars		yes	
2021	molecular spectra. Energy levels of molecular orbital's (σ , π , n).									
	Selection rules for electronic spectra. Types of electronic transitions in									
	molecules effect of conjugation. Concept of chromospheres and									
	auxochrome.									
	Infra red spectroscopy									
	Different Regions in Infrared radiations. Modes of vibrations in		Assignment							
	diatomic and polyatomic molecules. Characteristic absorption bands of				yes					
	various functional groups. Interpretation of spectra-Alkanes, Aromatic,									

	Alcohols carbonyls, and amines with one example to each.						
	Proton magnetic resonance spectroscopy (¹ H-NMR)	C-13					
	Principles of nuclear magnetic resonance, equivalent and non-equivalent	NMR					
	protons, position of signals. Chemical shift, NMR splitting of signals -						
	spin-spin coupling, coupling constants. Applications of NMR with						
	suitable examples - ethyl bromide, ethanol, acetaldehyde, 1,1,2-tribromo						
	ethane, ethyl acetate, toluene and acetophenone.						
	<u>UNIT – II (Physical Chemistry)</u>						
Jun-	1. Dilute solutions						
2021	Colligative properties. Raoult's law, relative lowering of vapour						
	pressure, its relation to molecular weight of non-volatile solute.						
	Elevation of boiling point and depression of freezing point. Derivation						
	of relation between molecular weight and elevation in boiling point and						
	depression in freezing point. Experimental methods of determination.				Student seminars	yes	
	Osmosis, osmotic pressure, experimental determination. Theory of				seminars		
	dilute solutions. Determination of molecular weight of non-volatile						
	solute from osmotic pressure. Abnormal Colligative properties- Van't		Assignment	yes			
	Hoff factor.						
	2. Electrochemistry-I						
	Specific conductance, equivalent conductance. Variation of equivalent						
	conductance with dilution. Migration of ions, Kohlrausch's law.						

	Arrhenius theory of electrolyte dissociation and its limitations.			~		
	Ostwald's dilution law. Debye-Huckel-Onsagar's equation for strong			Group discussion	yes	
	electrolytes (elementary treatment only). Definition of transport number,					
	determination by Hittorfs method. Application of conductivity					
	measurements- conductometric titrations.					
Jul-	3. Electrochemistry-II					
2021	Single electrode potential, sign convention, Reversible and irreversible	Assignment	yes			
	cells Nernst Equation- Reference electrode, Standard Hydrogen					
	electrode, calomel electrode, Indicator electrode, metal - metal ion					
	electrode, Inert electrode, Determination of EMF of cell, Applications					
	of EMF measurements - Potentiometric titrations.					
	4. Phase rule					
	Concept of phase, components, degrees of freedom. Thermodynamic					
	Derivation of Gibbs phase rule. Phase equilibrium of one component					
	system - water system. Phase equilibrium of two- component system,					
	solid-liquid equilibrium. Simple eutectic diagram of Pb-Ag system,					
	simple eutectic diagram, desilverisation of lead., NaCl-Water system,					
	Freezing mixtures.					
Aug- 2021		Mid-Exams	yes			
2021		Sem end				
		exams	yes			

111	[B.Sc,. F	ANNUAL CURRICU aper – V Name of the lecturer: Dr SB Ronald						1			
S.			Additional inputs	С	Curricular	activity	Te	C	lo-curricu	lar activity	
No	Month	Syllabus-Topic	Value Addition	Activity	Hours allotted	Whether Conducted	If not alternate days	Activity	Hours allotted	Whether Conducted	If not alternate days
	Nov- 2020	INORGANIC CHEMISTRY <u>Coordination Chemistry:</u>									
		Important terms and their definitions: - Double salts, Complex ion,	John-								
		Central metal, Ligand, Coordination sphere, Coordination number.	teller effect								
		IUPAC nomenclature. Bonding Theories: - Werner's theory and						Student exchange		yes	
		Sidgwick's concept of coordination, EAN rule. Valencey Bond Theory-						programme			
		geometries, formation and magnetic properties of the complexes with									
		coordination numbers 4-tetrahedral and square planar complexes and 6-		Quiz		Vac					
		octahedral complexes, limitations of Valency Bond Theory. Crystal				Yes					
		Filed Theory:- Splitting of d-orbital in Octahedral, Tetrahedral and									
		Square-planar complexes, low spin and high spin complexes.									
	Dec- 2020	Spectral and magnetic properties of metal complexes									
	2020	Electronic absorption spectrum of $[Ti(H_2O)_6]^{3+}$ ion. Types of magnetic									
		behavior, spin-only formula, calculation of magnetic moments,		Assignment		Not					
		Experimental determination of magnetic susceptibility- Gouy method.				yes		Industrial visit		Conducted	

	Stability of metal complexes:					
	Factors affecting the stability of metal complexes, chelate effect,					
	determination of composition of complex by Job's method and Mole					
	ratio method.					
	ORGANIC CHEMISTRY					
Jan-2021	<u>Nitro alkanes</u>					
	Nomenclature and classification of nitroalkanes, structure -Tautomerism					
	of nitroalkanes leading to aci and keto form, Preparation of	Assignment	Conducted			
	Nitroalkanes, reactivity -halogenations, reaction with HNO_2 (Nitrous	rissignment				
	acid), Nef reaction, Mannich reaction and Micheal addition reaction.			Group		
	Amines:			discussion	Conducted	
	Classification into 1°, 2°, 3° Amines and Quaternary ammonium					
	compounds. Preparative methods –					
	1. Ammonolysis of alkyl halides 2. Gabriel synthesis 3. Hoffman's					
	bromamide reaction (mechanism). Reduction of Amides and Schmidt					
	reaction. Physical properties and basic character - Comparative basic					
	strength of Ammonia, methyl amine, dimethyl amine, trimethyl amine					
	and aniline – comparative basic strength of aniline, N-methylaniline and	Mid-I Exams	Conducted			
	N,N-dimethyl aniline (in aqueous and non-aqueous medium), steric					
	effects and substituent effects. Chemical properties: a) Alkylation b)					
	Acylation c) Carbylamines reaction d) Hinsberg separation e) Reaction					

		г — г		r	1	-	1	1
	with Nitrous acid of 1° , 2° , 3° (Aliphatic and aromatic amines).					Student		
	Electrophillic substitution of Aromatic amines - Bromination and					seminars	Conducted	
	Nitration. Diazotization.							
Feb-	Cyanides and Isocyanides:							
2021	Preparation of Cyanides from: a) Alkyl halides b) from Amides c) from							
	Aldoximes. Preparation of Isocyanides from: Alkyl halides and Amines.	ŀ	Assignment		yes			
	Chemical properties of Cyanides and Isocyanides:							
	a) Hydrolysis b) addition of Grignard reagent c) reduction d) oxidation.							
	PHYSICAL CHEMISTRY							
	Thermodynamics:							
	The first law of thermodynamics-statement, definition of internal energy							
	and enthalpy. Heat capacities and their relationship. Joule-Thomson							
	effect- coefficient. Calculation of w, for the expansion of perfect gas							
	under isothermal and adiabatic conditions for reversible processes. State							
	function. Temperature dependence of enthalpy of formation-Kirchhoff s							
	equation. Second law of thermodynamics. Different Statements of the							
	law. Carnot cycle and its efficiency. Carnot theorem.							
Mar-	Concept of entropy, entropy as a state function, entropy changes in							
2021	reversible and irreversible processes. Entropy changes in spontaneous		Mid-II		Conducted			
	and equilibrium processes.		Exams					
	and equinorium processes.		Sem End		Conducted			
			Exams					

		SRI Y.N.COLLEGE (A		//		5					
		ANNUAL CURRICU III B.Sc,. Paper – VI Name of the lecturer: P.		AN-YEAR 20	20-2021						
			Additional		Curricula	r activity		(Co-curricu	lar activity	
S. No	Month	Syllabus-Topic	inputs Value Addition	Activity	Hours allotted	Whether Conducted	If not alternate days	Activity	Hours allotted	Whether Conducted	If not alternate days
	Nov- 2020	INORGANIC CHEMISTRY Reactivity of metal complexes:									
		Labile and inert complexes, ligand substitution reactions - SN^1 and SN^2 ,		Assignment		yes					
		substitution reactions of square planar complexes - Trans effect and									
		applications of trans effect.						Quiz	ves		
		Bioinorganic chemistry:							Ĩ		
		Essential elements, biological significance of Na, K, Mg, Ca, Fe, Co,						Student			
		Ni, Cu, Zn and Cl ⁻ . Metalloporphyrins – Structure and functions of						exchange programme		yes	
		hemoglobin, Myoglobin and Chlorophyll.							programme		
	Dec-	PHYSICAL CHEMISTRY									
	2020	Chemical kinetics									
		Rate of reaction - Definition of order and molecularity. Derivation of									
		rate constants for first, second, third and zero order reactions and		Assignment		yes					
		examples. Derivation for time half change. Methods to determine the									
		order of reactions. Effect of temperature on rate of reaction, Arrhenius									
		equation, concept of activation energy.						Industrial visit		yes	
		Photochemistry									
		Difference between thermal and photochemical processes. Laws of									

	photochemistry- Grothus-Draper's law and Stark-Einstein's law of							
	photochemical equivalence. Quantum yield-Photochemical reaction							
	mechanism- hydrogen- chlorine, hydrogen- bromine reaction.							
	Qualitative description of fluorescence, phosphorescence,							
	Photosensitized reactions- energy transfer processes (simple example)							
	ORGANIC CHEMISTRY							
	Heterocyclic Compounds							
	Introduction and definition: Simple five membered ring compounds							
	with one hetero atom Ex. Furan. Thiophene and pyrrole - Aromatic							
	character - Preparation from 1,4,- dicarbonyl compounds, Paul-Knorr		Assignment		ves			
	synthesis.		8		yes			
	Properties : Acidic character of pyrrole - electrophillic substitution at 2							
	or 5 position, Halogenation, Nitration and Sulphonation under mild							
	conditions - Diels Alder reaction in furan.					Student	yes	
	Pyridine – Structure - Basicity - Aromaticity - Comparison with pyrrole					seminars	J	
	- one method of preparation and properties - Reactivity towards							
	Nucleophilic substitution reaction.							
Jan-	Carbohydrates							
2021	Monosaccharides: (+) Glucose (aldo hexose) - Evidence for cyclic	Confor-						
	structure of glucose (some negative aldehydes tests and mutarotation) -	mationsof glucosides,						
	Proof for the ring size (methylation, hydrolysis and oxidation reactions)	sucrose and maltose						
1			1	1			1	

	- Pyranose structure (Haworth formula and chair conformational formula).				Guest lecture	yes	
	(-) Fructose (ketohexose) - Evidence of 2 - ketohexose structure						
	(formation of pentaacetate, formation of cyanohydrin its hydrolysis and						
	reduction by HI). Cyclic structure for fructose (Furanose structure and		Mid-I exams	yes			
	Haworth formula) - osazone formation from glucose and fructose -						
	Definition of anomers with examples.						
	Interconversion of Monosaccharides:						
	Aldopentose to Aldohexose (Arabinose to D- Glucose, D-Mannose)						
	(Kiliani - Fischer method). Epimers, Epimerisation - Lobry de bruyn						
	van Ekenstein rearrangement. Aldohexose to Aldopentose (D-Glucose						
	to D- Arabinose) by Ruff degradation.						
	Aldohexose to Ketohexose [(+) Glucose to (-) Fructose] and Ketohexose						
	to Aldohexose (Fructose to Glucose)						
Feb-	Amino acids and proteins						
2021	Introduction: Definition of Amino acids, classification of Amino acids						
	into alpha, beta, and gamma amino acids. Natural and essential amino	Isolationand					
	acids - definition and examples, classification of alpha amino acids into	analysis of aminoacids					
	acidic, basic and neutral amino acids with examples. Methods of	form proteins					
	synthesis: General methods of synthesis of alpha amino acids (specific						
	examples - Glycine, Alanine, valine and leucine) by following methods:						

	a) from halogenated carboxylic acid b) Malonic ester synthesis c)				
	strecker's synthesis.				
	Physical properties: Zwitter ion structure - salt like character -				
	solubility, melting points, amphoteric character, definition of isoelectric				
	point.				
Mar-	Chemical properties: General reactions due to amino and carboxyl	Mid-II Exams	Yes		
2021	groups - lactams from gamma and delta amino acids by heating peptide		105		
	bond (amide linkage). Structure and nomenclature of peptides and	Sem end exams	yes		
	proteins.		5		

		SRI Y.N.COLLEGE (A				5					
	D.C. D	ANNUAL CURRICI	JLAR PLA	N-YEAR 2020)-2021						
111	B.SC,. Pa	aper – VII Name of the lecturer: Dr. SB Ronald, P.Sahithi	Additional	C	Curricula	r activity			Co-curricu	lar activity	
S. No	Month	Syllabus-Topic	inputs Value Addition	Activity	Hours allotted	Whether Conducted	If not alternate days	Activity	Hours allotted	Whether Conducted	If not alternate days
	Apr-2021	Introduction Concept, scope and importance of Environmental Chemistry - Definitions of some terms used in Environmental Chemistry: Pollutant, Contaminant, Receptor, Sink, TLV- Segments of environment, Renewable resources: Solar and Biomass energy-Non-renewable resources: Thermal power and atomic energy - Reactions of atmospheric oxygen and Hydrological cycle.		Assignment		yes					
	May- 2021	Air Pollution Definition – Sources of air pollution – Classification of air pollutants – Acid rain – Photochemical smog – Green house effect – Formation and depletion of ozone – Bhopal gas disaster – Controlling methods of air pollution		Assignment		yes					
	Jun- 2021	Chemical Toxicology Toxic chemicals in the environment – effects of toxic chemicals – cyanide and its toxic effects – pesticides and its biochemical effects – toxicity of lead, mercury, arsenic and cadmium.						Student seminars		yes	
		Water pollution Unique physical and chemical properties of water - Classification of water pollutants - Dissolved oxygen, BOD, COD- Hardness of water - Methods to convert temporary hard water into soft water- Methods to convert permanent hard water into soft water- Eutrophication and its effects- Methods of purifying waste water(Waste water treatment)		Assignment		yes					

	Ecosystem and biodiversity					
Jul-2021	Ecosystem: Concepts – structure – Functions and types of ecosystem –					
	Abiotic and biotic components - Energy flow and Energy dynamics of					
	ecosystem – Food chains – Food web – Tropic levels – Biogeochemical	Assignment	ves			
	cycles (carbon, nitrogen and phosphorus)	8				
				Group	yes	
	Biodiversity: Definition – level and types of biodiversity – concept -			discussion		
	significance – magnitude and distribution of biodiversity -					
	biogeographical classification of India - biodiversity at national, global					
	and regional level.	Mid-Exams	yes			
Aug-		Sem end	yes			
2021		exams				

II B.Sc,. C	luster – I, Name of the lecturer: ChRVR Prasad		-				1 -	~ .			
S.		Additional inputs	C	Curricular	activity	TO	(Co-curricu	lar activity	TC (
No Month	Syllabus-Topic	Value Addition	Activity	Hours allotted	Whether Conducted	If not alternate days	Activity	Hours allotted	Whether Conducted	If not alternate days	
Apr- 2021	UNIT –I Review of energy sources (renewable and non-renewable) –		Assignment		yes						
	classification of fuels and their calorific value. Coal: Uses of Coal (fuel										
	and non fuel) in various industries, its composition, carbonization of										
c a r	coal. Coal gas, producer gas and water gas -Manufacture, composition					Student seminars	Student		yes		
	and uses. Fractionation of coal tar - uses of coal tar based chemicals,										
	requisites of a good metallurgical coke, coal gasification (Hydro										
	gasification and catalytic gasifi										
May-	Unit – II Lubricants										
2021	Classification of lubricants, lubricating oils (conducting and non-		Assignment		yes						
	conducting), solid and semi solid lubricants, synthetic lubricants.										
	Properties of lubricants (viscosity index, cloud point, pore point) and										
	their determination. Applications of lubricants.										
	UNIT-III										
	Crude petroleum and petrochemicals:										
	Composition of crude petroleum, refining of petroleum and different										
	types of petroleum products and their applications. Petro chemicals:										

Jun-	vinyl acetate, propylene oxide, isoprene, butadiene, toluene and its					
2021	derivative xylene.					
	UNIT-IV					
	Fractional distillation (principle and process), cracking (Thermal and	Assignment	yes			
	catalytic cracking). Reforming (Thermal and catalytic) Petroleum and					
	non petroleum fuels. LPG, CNG, LNG, bio-gas, fuels derived from					
	biomass, fuel from waste, synthetic fuels (gaseous and liquids).					
Jul-	UNIT-V					
2021	Batteries					
	Primary and secondary batteries, battery components and their role,	Assignment	Yes	Group discussion	yes	
	Characteristics of Battery. Working of following batteries: Pb acid, Li-					
	Battery. Fuel cells and Solar cell.					
		Mid-Exams	Yes			
Aug- 2021		Sem end	ves			
		exams	Jes			

		SRI Y.N.COLLEGE (A				5					
III	B.Sc., Cl	ANNUAL CURRICU luster – II Name of the lecturer: Ch. Udaya Bhaskara Rao	JLAR PLA	N-YEAR 2021	-2022						
			Additional	C	urricula	r activity		Co-curricular activity			
S. No	Month		inputs Value Addition	Activity	Hours allotted	Whether Conducted	If not alternate days	Activity	Hours allotted	Whether Conducted	If not alternate days
	Apr- 2021	. <u>INORGANIC MATERIALS OF INDUSTRIAL IMPORTANCE</u> Recapitulation of <i>s</i> - and <i>p</i> -Block Elements									
		Periodicity in s- and p-block elements with respect to electronic		Assignment		yes					
		configuration, atomic and ionic size, ionization enthalpy, electro									
		negativity (Pauling, Mullikan and Alfred – Rochow scales). Allotropy									
		in C, S, and P. Oxidation states with reference to elements in unusual									
		and rare oxidation states like carbides and nitrides), inert pair effect,									
		diagonal relationship and anomalous behavior of first member of each									
		group.									
	May-	Silicate Industries									
	2021	Glass: Glassy state and its properties, classification (silicate and non-									
		silicate glasses). Manufacture and processing of glass. Composition and		Assignment		yes					
		properties of the following types of glasses: Soda lime glass, lead glass,									
		armoured glass, safety glass, borosilicate glass, fluorosilicate, coloured									
		glass, photosensitive glass.									
		Ceramics: Important clays and feldspar, ceramic, their types and									
		manufacture. High technology ceramics and their applications,									

	superconducting and semiconducting oxides, fullerenes, carbon							
	nanotubes and carbon fibre.					Student seminars	yes	
	Cements: Classification of cement, ingredients and their role,							
	Manufacture of cement and the							
	setting process, quick setting cements.							
Jun-	Fertilizers:		Assignments					
2021	Different types of fertilizers. Manufacture of the following fertilizers:			Yes				
	Urea, ammonium nitrate, calcium ammonium nitrate, ammonium			105				
	phosphate, polyphosphate, superphosphate, compound and mixed							
	fertilizers, potassium chloride, potassium sulphate.							
	Surface Coatings:							
	Objectives of coatings surfaces, classification of surface coatings. Paints							
	and pigments-formulation, composition and related properties. Oil paint,							
	Vehicle, modified oils, Pigments, toners and lakes pigments, Fillers,							
	Thinners, Enamels, emulsifying agents. Special paints (Heat retardant,							
	Fire retardant, Eco-friendly paint, Plastic paint), Dyes, methods of							
	dying, classification of dyes, Wax polishing, Water and Oil paints,					Group discussion	yes	
	additives, Metallic coatings (electrolytic and electrolysis).							
Jul- 2021	Alloys:							
	Classification of alloys, ferrous and non-ferrous alloys, Specific							
	properties of elements in alloys. Manufacture of Steel (removal of		Assignment	yes				

	silicon decarbonization, demanganization, desulphurization					
	dephosphorisation) and surface treatment (argon treatment, heat					
	treatment, nitriding, carburizing). Composition and properties of					
	different types of steels.					
Aug- 2021	Chemical explosives:					
	Origin of explosive properties in organic compounds, preparation and	Mid-Exams	Yes			
	explosive properties of					
	lead azide, PETN, cyclonite (RDX). Introduction to rocket propellants.	Sem end exams	yes			
		•••••				

	ANNUAL CURRIC	ULAR PLA	N-YEAR 2020)-2021						
III B.Sc,.	Cluster – III, Name of the lecturer: Ch RVR Prasad									
a	n Syllabus-Topic	Additional	C	Curricula	r activity		Co-curricular activity			
S. No Month		inputs Value Addition	Activity	Hours allotted	Whether Conducted	If not alternate days	Activity	Hours allotted	Whether Conducted	If not alternate days
Apr- 2021	ANALYSIS OF APPLIED INDUSTRIAL PRODUCTS UNIT-I									
	Analysis of soaps: moisture and volatile matter, combined alkali, total		Assignment		yes					
	fatty matter, free alkali, total fatty acid.									
	Analysis of oils: saponification value, iodine value, acid value, ester									
	value.									
May-	UNIT- II				yes					
2021	Analysis of paints : Vehicle and pigments, Barium Sulphate, total lead,		Assignment			S. 1 .				
	lead chromate, iron pigments, zinc chromate.									
	Analysis of starch, sugars, cellulose and paper.						Student seminar		yes	
	UNIT-III									
	Analysis of fertilizers : urea, super phosphate.									
	Analysis of Pesticides: DDT, BHC.									
	UNIT -IV									
Jun-	Analysis of industrial solvents like benzene, acetone, methanol and									
2021	acetic acid,		Assignments							
	Gas analysis: carbon dioxide, carbon monoxide, oxygen, hydrogen,				yes					

	saturated hydro carbons, unsaturated hydrocarbons, nitrogen, octane							
	number, cetane number.	Assignmer	t	ves	Group discussion			
	Proximate and Ultimate analysis of coal: carbon, hydrogen, nitrogen,	Assignmen	L .	yes			yes	
	oxygen, phosphorus and sulfur.							
Jul-	UNIT - V							
2021	Analysis of cement- loss on ignition, insoluble residue, total silica,							
	sesqui oxides, lime, ferric oxide, sulphuric anhydride.							
	Analysis of glasses - Determinaiton of silica, sulphur, calcium,							
	magnesium, chloride.							
Aug-		Mid-Exam	s	Yes				
2021		Sem end						
		exams		yes				