BOTANY

COURSE OUTCOMES

FUNDAMENTALS OF MICROBES AND NON - VASCULAR PLANTS

SEMESTER - I

THEORY

CO#	Course Outcome
CO1	Explain origin of life on the earth. (K3)
CO2	Illustrate diversity among the viruses and prokaryotic organisms and can categorize them.(K3)
CO3	Classify fungi, lichens, algae and bryophytes based on their structure, reproduction and life cycles.(K4)
CO4	Analyze and ascertain the plant disease symptoms due to viruses, bacteria and fungi. (K4)
CO5	Explain the evolutionary trends among amphibians of plant kingdom for their shift to land habitat. (K3)
CO6	Evaluate the ecological and economic value of microbes, thallophytes and bryophytes. (K5)

CO#	Course Outcome
CO1	Demonstrate of Gram's staining technique for Bacteria. (K3)
CO2	Illustrate different Viruses (Corona, Gemini and TMV) using electron micrographs/ models. (K3)
CO3	Demonstrate Archaebacteria and Actinomycetes using permanent slides/electron micrographs/diagrams. (K3)
CO4	Demonstrate Anabaena and Oscillatoriausing permanent/ temporary slides. (K3)
CO5	Classify different bacteria (Cocci, Bacillus, Vibrio and Spirillum) using permanent or temporary slides/ electron micrographs/ diagrams. (K4)
CO6	Demonstrate vegetative, sectional/anatomical and reproductive structures of the following using temporary or permanent slides/ specimens/ mounts. (K3)

SEMESTER - II

BASICS OF VASCULAR PLANTS AND PHYTOGEOGRAPHY

$(Pteridophytes, Gymnosperms, Taxonomy\ of\ Angiosperms\ and\\ Phytogeography)$

THEORY

CO#	Course Outcome
CO1	Classify and compare Pteridophytes and Gymnosperms based on their
	morphology, anatomy, reproduction and life cycles. (K4)
CO2	Justify evolutionary trends in tracheophytes to adapt for land habitat. (K5)
CO3	Explain the process of fossilization and compare the characteristics of extinct
	and extant plants. (K3)(K4)
CO4	Illustrate various taxonomical aids for identification of Angiosperms and
	Analyze the morphology of the most common Angiosperm plants of their
	localities and recognize their families. (K4)
CO5	Evaluate the ecological, ethnic and economic value of different
	tracheophytes and summarize their goods and services for human welfare.
	(K5)
CO6	Explain different phytogeographical regions of the world and India and can
	analyze their floristic wealth. (K3)

CO#	Course Outcome
CO1	Demonstrate the techniques of section cutting, preparing slides, identifying
	of the materialand drawing exact figures.(K3)
CO2	Compare and contrast the morphological, anatomical and reproductive features of vascular plants. (K4)
CO3	Illustrate the local angiosperms of the families prescribed to their genus and species level and prepare herbarium. (K3)
CO4	Develop skills of preparing slides, identifying the given twigs in the lab and drawing figures of plant twigs, flowers and floral diagrams as they are. (K3)
CO5	Prepare and preserve specimens of local wild plants using herbarium techniques. (K3)
CO6	Chart phytogeographical region of the globe and India. (K3)

SEMESTER - III

PLANT TAXONOMY AND EMBRYOLOGY

THEORY

CO#	Course Outcome
CO1	Illustrate the organization of tissues and tissue systems in plants. (K3)
CO2	Illustrate and interpret various aspects of embryology. (K3)
CO3	Discuss the basic concepts of plant ecology, and evaluate the effects of environmental and biotic factors on plant communities. (K2)
CO4	Appraise various qualitative and quantitative parameters to study the population and community ecology. (K5)
CO5	Correlate the importance of biodiversity and consequences due to its loss. (K4)
CO6	List the endemic/endangered flora and fauna from two biodiversity hot spots in India and assess strategies for their conservation. (K3)

CO#	Course Outcome
CO1	Explain Tissue organization in root and shoot apices using permanent slides.
	(K3)
CO2	Demonstrate Anomalous secondary growth in stems of Boerhavia and
	Dracaena. (K3)
CO3	Evaluate anther and ovule using permanent slides/photographs and pollen
	germination and pollen viability. (K5)
CO4	Analyze Structure of endosperm (nuclear and cellular) using permanent
	slides / Photographs. (K4)
CO5	Demonstrate Developmental stages of dicot and monocot embryos using
	permanent slides / photographs. (K3)
CO6	Appraise of instruments used to measure microclimatic variables; soil
	thermometer, maximum and minimum thermometer, anemometer, rain
	gauze, and lux meter. (K5)

SEMESTER -IV

PLANT PHYSIOLOGY AND METABOLISM

THEORY

CO#	Course Outcome
CO1	Articulate the importance of water in plant life and mechanisms for transport
	of water and solutes in plants. (K3)
CO2	Evaluate the role of minerals in plant nutrition and their deficiency
	symptoms. (K5)
CO3	Interpret the role of enzymes in plant metabolism. (K3)
CO4	Illustrate the light reactions and carbon assimilation processes responsible for
	synthesis of food in plants. (K3)
CO5	Analyze the biochemical reactions in relation to Nitrogen and lipid
	metabolisms. (K4)
CO6	Evaluate the physiological factors that regulate growth and development in
	plants and Examine the role of light on flowering and explain physiology of
	plants under stress conditions. (K5)

CO#	Course Outcome
CO1	Calculate of stomatal index and stomatal frequency of a mesophyte and a xerophyte. (K3)
CO2	Determine the rate of transpiration using Cobalt chloride method / Ganong's potometer (at least for a dicot and a monocot). (K3)
CO3	Demonstrate the Effect of Temperature on membrane permeability by colorimetric method. (K3)
CO4	Separate of chloroplast pigments using paper chromatography technique. (K4)
CO5	Demonstrate of Polyphenol oxidase enzyme activity (Potato tuber or Apple fruit). (K3)
CO6	Dissect C3, C4 and CAM leaves to study their anatomy. (K4)

SEMESTER - V

CELL BIOLOGY, GENETICS AND PLANT BREEDING

THEORY

CO#	Course Outcome
CO1	Distinguish prokaryotic and eukaryotic cells and design the model of a cell.
	(K5)
CO2	Demonstrate techniques to observe the cell and its componentsunder a
	microscope. (K3)
CO3	Discuss the basics of Mendelian genetics, its variations and interpret
	inheritance of traits in living beings. (K4)
CO4	Illustrate the role of extra-chromosomal genetic material for inheritance of
	characters. (K3)
CO5	Evaluate the structure, function and regulation of genetic material. (K5)
CO6	Understand the application of principles and modern techniques inplant
	breeding. And Explain the procedures of selection and hybridization for
	improvement of crops. (K3)

CO#	Course Outcome
CO1	Demonstration of Mitosis in Allium cepa/Aloe vera roots using squashtechnique; observation of various stages of mitosis in permanent slides. (K3)
CO2	Study of structure of DNA and RNA molecules using models. (K4)
CO3	Solving problems monohybrid, hybrid, back and test crosses. (K3)
CO4	Solving problems on gene interactions (atleast one problem for each of the gene interactions in the syllabus). (K3)
CO5	Chromosome mapping using 3- point test cross data. (K3)
CO6	Demonstration of emasculation, bagging, artificial pollination techniques for hybridization. (K3)

SEMESTER -V

PLANT ECOLOGY AND PHYTOGEOGRAPHY

THEORY

CO#	Course Outcome
CO1	Illustrate the ecological factors on plants such as climatic, edaphic and
	biotic. (K4)
CO2	Explain in detail about the concept and components of its productivity and
	biogeochemical cycle. (K3)
CO3	Analyze the impact of human population on ecological system and
	interaction between plants growing in a community. (K4)
CO4	Illustrate the principles and distribution of phytogeography and map
	photogeographic regions in the world and particularly in India. (K4)
CO5	Illustrate biodiversity hotspots – Ctiteria, Biodiversity hotspots in India. (K4)
CO6	Evaluate the loss of biodiversity – causes and conservation (Insitu and Ex –
	situ conservation). (K5)

CO#	Course Outcome
CO1	Measure microclimatic variables using soil thermometer, maximum and minimum thermometer, anemometer, rain guaze and lux meter. (K5)
CO2	Determine permeability (percolation; total capacity as well as rate of movement) of different soil samples. (K3)
CO3	Determine soil Ph. (K3)
CO4	Demonstrate phytoplankton and macrophytes from water bodies. (K3)
CO5	Chart the hotspots, phytogeographical regions and distribution of endemic plants in the map of India. (K3)
CO6	Demonstrate endangered plants species, critically endangered plant species, vulnerable plant species and monotypic endemic genera of india with the help of photographs, herbarium, floras and Red databook. (K3)

SEMESTER -VI

PLANT TISSUE CULTURE AND BIOTECHNOLOGICAL APPLICATIONS

THEORY

CO#	Course Outcome
CO1	Illustrate plant tissue culture research – basic principles of plant tissue
	callus, meristem, organ, endosperm cultures. (K2)
CO ₂	Discuss restriction endonucleases, cloning vectors, gene cloning. (K2)
CO3	Evaluate method of gene transfer – agrobacterium – mediated, direct
	gene transfer by electroporation, microinjection micro projectile. (K5)
CO4	Select the transgenics – selectable marker and reporter genes. (K2)
CO5	Explain application of plant genetic engineering – crop improvement,
	herbicide resistance, insect resistance, virus resistance. (K2)
CO6	Give genetic modification – transgenic plants for pest resistant. (K2)

CO#	Course Outcome
CO1	Prepare MS Medium. (K3)
CO2	Demonstrate invitro sterilization methods and inoculation methods using
	leaf and nodal explants of Tobacco, Datura, Brassica etc. (K2)
CO3	Differentiate steps involed in genetic engineering for production of Bt.cotton,
	Golden rice ,Flaver saver tomato through photographs. (K4)
CO4	Show isolation of plasmid DNA. (K2)
CO5	Demonstrate restriction digestion and gel electrophoresis of plasmid
	DNA. (K2)
CO6	Distinguish field visit to a lab involed in tissue culture. (K5)