DEPARTMENT OF PG MATHEMATICS

COURSE OUTCOMES

SEMESTER – I

ALGEBRA - 1

CO#	Course Outcome
CO1	Describe the definitions of Automorphism, Conjugacy and G- sets with it's examples.
CO2	Discuss finitely generated abelian groups and invariants of finite abeliangroups.
CO3	Explain Sylow's first theorem, Sylow's second theorem and Sylow's third theorem with it's examples.
CO4	Discuss ideals and homomorphism, Maximal ideal and prime ideal, Nilpotent ideal and nil ideal.
CO5	Simply explain Zorn's lemma.
CO6	Learn the unique factorization domain, principal ideal domain and Euclidean domain.

REAL ANALYSIS - 1

CO#	Course Outcome
CO1	Describe the finite countable and uncountable sets, Metric spaces and Compact sets.
CO2	Explain the convergent sequences & Cauchy sequences & some special sequences.
CO3	Solve the problems to using ratio and root tests and analyze power series.
CO4	Understand the limits of functions & continuity and compactness and Monotonic
	functions.
CO5	Learn the Mean value theorems, L- Hospital's Rule and Taylor's theorem.

DIFFERENTIAL EQUATIONS

CO#	Course Outcome
CO1	Applications of second order linear differential equations will be studied.
CO2	Solve Homogeneous equations and use of a known solution to find another.
CO3	Recognise differential equations that can be solved by each of three methods.
CO4	Solve the boundary value problems and by Strum Comparison theorem solved Eigenvalues, Eigen functions.
	, ,
CO5	Review of Power Series and solved first and second order linear equations to verify
	ordinary, regular singular points.
CO6	Understand the linear system and solved homogeneous linear system with constant
	Co-efficients.

TOPOLOGY

CO#	Course Outcome
CO1	Gain an understanding the algebra of sets, functions, Product of sets, Partitions and equivalence relations.
CO2	Learn the basic concepts of open set and closed sets and apply these two sets in real lifeexamples.
CO3	Develop the Knowledge on Topological spaces through the participating in a Quiz.
CO4	Know the Weak Topologies.
CO5	Understand the Tychnoff's theorem and Ascoli's theorem.

DISCRETE MATHEMATICS

CO#	Course Outcome
CO1	Discuss relations, properties of binary relations in a set, Relation matrix and graph of a relation, partition and covering of a set, equivalence relations,
	compatibility relation, composition of binary relations.
CO2	Discuss lattices as partially ordered sets, some properties of lattices, lattices as
	algebraic systems.
CO3	Explain Boolean algebra, sub algebra, direct product and homomorphism.
CO4	Acquire the knowledge from Boolean forms and free Boolean algebras, values of
	Boolean expressions.
CO5	Describe representations and minimizations of Boolean functions.
CO6	Explain finite state machines, Introductory sequential circuits, equivalence of Finite
	State Machines.

SEMESTER - II

ALGEBRA - II

CO#	Course Outcome
CO1	Discuss the definitions of Irreducible polynomials and Eisenstein criterion, Algebraic extensions and algebrically closed fields with it's examples.
CO2	Explain splitting fields and normal extensions, multiple roots, finite fields and Separable extensions.
CO3	Simply explain fundamental theorem of Galois theory and fundamental theorem of algebra.
CO4	Explain applications of Galois theory to classical problems.
CO5	Solve the problems by using radicals, ruler and compass construction.

REAL ANALYSIS - II

CO#	Course Outcome
CO1	Learn the definition and existence of the Riemann stieltjes Integral.
CO2	Acquire the Knowledge of uniform convergence and uniform convergence & continuity and Integration.
CO3	Apply the stone wierstrass theorem for obtain results von the function of algebra.
CO4	Understand the Linear Transformations and the contraction principle.
CO5	Give seminars on the implicit function theorem, the Rank theorem & Derivatives of higher order for improving subject.

COMPLEX ANALYSIS - I

CO#	Course Outcome
CO1	Discuss the elementary properties and solved the examples of Analytic functions.
CO2	Understand the mobius transformations.
CO3	Know the fundamentals of Analytic functions, to studied Riemann Stieltjes integrals and Analyze Power Series representation of Analytic function.
CO4	Learn the Cauchy's theorem and the homotopic version of Cauchy's theorem.
CO5	Examine functions are analytic in a punctured disk.

LINEAR ALGEBRA

CO#	Course Outcome
CO1	Explain elementary canonical forms, annihilating polynomials, invariant subspaces.
CO2	Discuss Simultaneous triangulation and simultaneous diagonalization.
CO3	Describe direct –sum decompositions, invariant direct-sums.
CO4	Discuss the primary decomposition theorem, cyclic subspaces and Annihilators.
	Learned cyclic decompositions and the rational forms.
CO5	Acquire the knowledge in the Jordan forms, computation of invariant factors, semi
	simple operators.
CO6	Discuss Bilinear forms, symmetric bilinear forms and skew symmetric Bilinear
	forms.

PROBABILITY THEORY AND STATISTICS

CO#	Course Outcome
CO1	Discuss Sample spaces, events and the axioms of Probability.
CO2	Learn some elementary theorems and Boole's inequality.
CO3	Give brief explanation on Conditional probability and studied Bayes theorm.
CO4	Discuss Descret and Continuous Random variables and studied Binomial, Poisson, Normal and uniform distributions.
CO5	Learn meaning of Correlation, Scatter diagram Karl person's coefficient of Correlation, Rank Correlation.
CO6	Know types of sampling, parameters and solved some problems on tests of significance.

SEMESTER - III

LEBESGUE THEORY

CO#	Course Outcome
CO1	Explain algebra of sets, lebesgue measure, outer measure, measurable set and lebesgue measure.
CO2	Discussion- measurable set, measurable function, Little woods's three principles
CO3	Describe the Riemann integral, the lebesgue integral of a bounded function over a set offinite measures.
CO4	Explain the integral of a non-negative function, the general lebesgue integral convergence in measure.
CO5	Acquire the knowledge in differentiation of monotonic functions, functions of boundedvariation, differentiation of an integral.
CO6	Learn Lp-spaces, the Holder's and Minkowski inequalities, convergence and completeness.

PARTIAL DIFFERENCIAL EQUATIONS

CO#	Course Outcome
CO1	Recall the basic concepts of Partial Differential Equations.
CO2	Explain the Pfafian Differential forms and equations and some excercises.
CO3	Solve the problems on cauchy's Method of characteristics & compatiable system of firstorder equations.
CO4	Know the Partial Differential Equations of the second order and solve the linear hyperbolic equations.
CO5	Understand the elementary solutions, and Method of separation of variables of solving Laplace equation and the wave equation.

COMMUTATIVE ALGEBRA

CO#	Course Outcome
CO1	Review the definition and elementary properties of rings.
CO2	Discuss the prime and maximal ideals and explain the various elementary operations performed on ideals.
CO3	Give the definition and elementary properties of modules and gave brief treatment oftensor products.
CO4	Discuss how tensor products behave for exact sequences.
CO5	To educate the definitions and simple properties of the formation of fractions.
CO6	Discuss the decomposition of an ideal into Primary ideals and establish the uniquenesstheorems.

SEMESTER - IV

MEASURE THEORY

CO#	Course Outcome
CO1	Explain convergence and completeness in measure spaces.
CO2	Discuss measurable functions, integration, general convergence theorems.
CO3	Describe signed measures, the Raydon- Nikodym theorem, the LPspaces.
CO4	Explain outer measures and measurability, the Extension theorem.
CO5	Discuss the Lebesgue- stieltjes integral, product measures.
CO6	Acquire the knowledge in integral operators, inner measure, extension by sets of
	measure 0, caratheodory outer measure.

NUMERICAL ANALYSIS

CO#	Course Outcome
CO1	Determine the roots of a polynomial equation and obtain the initial approximations to the roots by solved some problems in different methods.
	tothe roots by sorved some problems in different methods.
CO2	To find the roots of the equations by some of the iteration methods.
CO3	Discuss the methods to construct the interpolating polynomials to a function and interpolate the indicated points.
CO4	To evaluate the derivative of a function in the closed form by Numerical methods.

GRAPH THEORY

CO#	Course Outcome
CO1	Learn the basic concepts of graphs and tress and fundamental circuits.
CO2	Know the cutsets and connectivity and separability.
CO3	Acquire the Knowledge of Planar graphs and Dual graphs.
CO4	Explain the Matrix representation of graphs and Application to a switching network in real life.
CO5	Describe the coloring, covering and Partitioning and further Operation Research.

LINEAR PROGRAMMING

CO#	Course Outcome
CO1	Discuss the formulation of linear programming problems, graphical solution and
	general solution of linear programming problem.
CO2	Describe simplex method and two- phase method, Big- M method and to resolve degeneracy in linear programming problem, solved problems in simplex method.
CO3	Explain the concept of duality in linear programming and comparison of the solutof the dual and primal.
CO4	Learn the formulation of assignment problem, Reduction theorem and Hungarian assignment method, traveling salesman problems.
CO5	Explain formation of transportation problem, methods to find initial basic feasible solution and north- West corner rule, lowest cost entry method and Vogel's approximation method.
CO6	Discuss optimality test, degeneracy in transportation problems and unbalancedtransportation problem.

DISCRETE DYNAMICAL SYSTEMS

CO#	Course Outcome
CO1	Discuss Phase portrait, periodic points and stable sets, differentiability and it's
	implications.
CO2	Explain the Sarkovskii's theorem and some basic problems.
CO3	Learn the definitions of parameterized families of functions and bifurcations Can
	set's, symbolic dynamics and chaos.
CO4	Describe topological Conjugacy, period doubling casade, Newton method.
CO5	Solve the problems on Numerical solutions of differential equations on Newton's
	method in complex plane.