DEPARTMENT OF ORGANIC CHEMISTRY

COURSE OUTCOMES

SEMESTER - I

GENERAL CHEMISTRY - I

CO#	Course Outcome
CO1	To learn about basic fundamentals of Quantum Chemistry and Molecular Spectroscopy.
CO2	To learn about wave mechanics of simple systems with contact potential energy, particle in one dimensional box.
CO3	To learn about concepts of microwave and IR_spectroscopy.
CO4	To learn about Raman spectroscopy and electronic spectra of diatomic molecules.

INORGANIC CHEMISTRY - I

CO#	Course Outcome
CO1	Acquire the knowledge on VSEPR, Valence bond and molecular orbital theories in explaining the structure of simple molecules.
CO2	Acquire the knowledge on preparation, structure and mechanisms of boranes, carboranes, metallo carboranes and cage compounds.
CO3	To learn about crystal field theory, crystal field splitting pattern in different geometries and calculation of crystal field stabilization energy.
CO4	Acquire the knowledge on how to draw Orgel and Tanabe_Sugano diagrams for metal complexes.

INORGANIC CHEMISTRY PRACTICALS

CO#	Course Outcome
CO1	To Synthesis the inorganic complexes like (i) Tetraamminecopper(II) sulphate (ii)
	Potassium tris-oxalato ferrate(III) trihydrate (iii) Tris-thiourea copper(I) sulphate.
CO2	Hands on experience on Semi micro qualitative analysis of six radical mixtures Anions: CO_3^{2-} , S^{2-} , SO_3^{2-} , CI^- , Br^- , I^- , NO_3^- , SO_4^{2-} , $CH_3COO^ C_2O_4^{2-}$, C_4 H_4 O_6^{2-} , PO_4^{3-} , CrO_4^{2-} , AsO_4^{3-} , F^- , BO_3^{3-} Cations: Ammonium (NH4+) 1st group: Hg, Ag, Pb, Tl, W 2nd group: Hg,Pb, Bi, Cu, Cd, As, Sb, Sn, Mo 3rd group: Fe, Al, Cr, Ce, Th, Ti, Zr, V, U, Be 4th group: Zn, Mn, Co, Ni 5th group: Ca, Ba, Sr 6th group: Mg, K, Li

ORGANIC CHEMISTRY

CO#	Course Outcome
CO1	Acquire the knowledge on Nature of bonding in organic molecules and Aromaticity.
CO2	To understand the Stereo Chemistry & Molecular representation of organic molecules.
CO3	Acquire the knowledge of Heterocyclic compounds.
CO4	To learn about Chemistry of some typical natural products (Alkaloids and
	Terpenoids).

ORGANIC CHEMISTRY PRACTICALS

CO#	Course Outcome
CO1	Hands on experience on Preparation, recrystallization, and determination of melting
	point& yield of the following compounds:
	(i) Aspirin, (ii) Nerolin, (iii) Chalcone,
	(iv) p-Nitro acetanilide, (v) 2,4,6- Tribromoaniline, (vi) m-Dinitrobenzene,
	(vii) Phthalimide, (viii) Diels-Alder adduct.

PHYSICAL CHEMISTRY - I

CO#	Course Outcome
CO1	Acquire knowledge on Thermodynamics.
CO2	Acquire knowledge on Micelles and Macro molecules.
CO3	Acquire knowledge on Chemical Kinetics.
CO4	Acquire knowledge on Photochemistry.

PHYSICAL CHEMISTRY PRACTICALS

CO#	Course Outcome
CO1	Acquire practical knowledge on Determination of critical solution temperature of
	phenol-water system.
CO2	Acquire practical knowledge on Effect of added electrolyte on the CST of phenol-

	water system.
CO3	Acquire practical knowledge on Conductometric titration of Strong acid versus Strongbase.
CO4	Acquire practical knowledge on Dissociation constant of weak acid (CH3COOH) by conductometric method.
CO5	Acquire practical knowledge on Conductometric titration of Weak acid vs Strong base.
CO6	Acquire practical knowledge on Determination of cell constant.
CO7	Acquire practical knowledge on Adsorption of acetic acid on animal charcoal or silicagel.
CO8	Acquire practical knowledge on Acid-catalyzed hydrolysis of methyl acetate.
CO9	Acquire practical knowledge on Determination of partial molar volume of solute – H2O system by apparent molar volume method.

SEMESTER – II

GENERAL CHEMISTRY - II

CO#	Course Outcome
CO1	To learn about basic fundamental concepts of Quantum chemistry.
CO2	Acquire the knowledge on symmetry element, symmetry operation and pointgroups.
CO3	To learn about accuracy and precision in doing experiments, understands the differenterrors and methods for minimizing errors.
CO4	To learn about introduction to computer programming_FORTRAN.
CO5	
CO6	

INORGANIC CHEMISTRY - II

CO#	Course Outcome
CO1	To learn about classification of clusters and different structural pattern of metal
	clusters.
CO2	Acquired knowledge on 16&18 electron rule ,bonding modes of CO,NO.
CO3	Acquire the knowledge on how to determine stability constant of particular complex through spectrophotometric and pH_metric method.
CO4	To learn about different types of electron transfer reaction and factors affecting
	them.

INORGANIC CHEMISTRY PRACTICALS

CO#	Course Outcome
CO1	To understand Volumetric Determination of Ferric iron by photochemical
	reduction.
CO2	To understand Volumetric Determination of Nickel by EDTA.
CO3	To understand Volumetric Determination of Calcium and Magnesium in a mixture by EDTA.
CO4	To understand Volumetric Determination of Ferrocyanide by Ceric sulphate.
CO5	To understand Volumetric Determination of Copper(II) in presence of iron(III).
CO6	To understand Gravimetric Determination of Zinc as Zinc pyrophosphate.
CO7	To understand Gravimetric Determination of Nickel from a mixture of Copper and Nickel.

ORGANIC CHEMISTRY - II

CO#	Course Outcome
CO1	Acquire knowledge on Aliphatic Nucleophilic Substitution, Nucleophilic Aromatic
	substitution and Elimination Reactions.
CO2	To understand Addition to Carbon – Carbon Multiple Bonds Reactions, Addition to
	Carbon– Hetero Multiple Bonds Reactions.
CO3	To understand Types of molecular rearrangements, migratory aptitude.
CO4	Acquire Basic principles and importance of UV, IR, NMR and Mass, Protection of
	carbonyl, Hydroxyl, carboxylic and Amine groups.

ORGANIC CHEMISTRY PRACTICALS

CO#	Course Outcome
CO1	To understand Systematic qualitative analysis of an organic mixture containing two
	compounds Identification of method of separation and the functional group(s)
	present in each of them and preparation of one solid derivative for the conformation
	of each of the functional group(s).

PHYSICAL CHEMISTRY - II

CO#	Course Outcome
CO1	To understand Physical methods of molecular structural elucidation.
CO ₂	Acquire knowledge on Thermodynamics part –II and Statistical Thermodynamics.
CO3	Acquire knowledge on Electrochemistry part-I.
CO4	Acquire knowledge on Electrochemistry part –II.

PHYSICAL CHEMISTRY PRACTICALS

CO#	Course Outcome
CO1	Acquire knowledge on Distribution of iodine between CHCl3 and water.
CO2	Acquire knowledge on Distribution of I2 between CHCl3 and aq.KI solution-calculation of equilibrium constant.
CO3	Acquire knowledge on Determination of Coordination number of cuprammonium cation.
CO4	Acquire knowledge on Titration of Fe ⁺² Vs K ₂ Cr ₂ O ^{7 –} potentiometry
CO5	Acquire knowledge on Titration of mixture Strong acid and weak acid versusStrong base by conductometry.
CO6	Acquire knowledge on Titration of Strong acid Vs Strong Base – pH – metry.
CO7	Acquire knowledge on Titration of mixture of (NaHCO ₃ + Na ₂ CO ₃) Vs HCl –pH-metry.
CO8	Acquire knowledge on Titration of Strong acid Vs Strong Base using Quinhydrone electrode.
CO9	Acquire knowledge on Verification of Beer-Lambert's law by Iron-thiocyanate system –colorimetry.
CO10	Acquire knowledge on Determination of single electrode potential of Cu ²⁺ /Cu and estimate the given unknown concentration.

SEMESTER - III

ORGANIC REACTION MECHANISMS - I & PERICYCLIC REACTIONS

CO#	Course Outcome
CO1	To deep learning of Aliphatic Nucleophilic substitution and AliphaticElectrophilic Substitution reactions.
CO2	To understand Principles of asymmetric synthesis.
CO3	Acquire knowledge on Molecular orbital symmetry, frontier orbitals of some compounds, classification of pericyclic reactions and Electrocyclic reactions.
CO4	To understand FMO, PMO approach for the explanation of sigma tropic rearrangements under thermal and photochemical conditions, sigmatropic rearrangements, sigmatropic rearrangements.

ORGANIC SPECTROSCOPY - I

CO#	Course Outcome
CO1	To understand UV-Visible spectroscopy and it's applications.
CO2	To understand Infrared spectroscopy and it's applications.
CO3	To understand Nuclear Magnetic Resonance Spectroscopy(1HNMR&13C NMR) and it's applications.
CO4	To understand Mass spectrometry and it's applications.

MODERN ORGANIC SYNTHESIS - I

CO#	Course Outcome
CO1	Acquire knowledge on Formation of C-C single bonds.
CO2	Acquire knowledge on Formation of Carbon-Carbon double bonds.
CO3	Acquire knowledge on Reactions of unactivated C-H bonds and organoboranes.
CO4	Acquire knowledge on Protecting groups and simple applications of microwave and
	ultrasound assisted reactions.

MODERN ORGANIC SYNTHESIS - I

CO#	Course Outcome
CO1	Acquire knowledge on Introduction, isolation, general methods of structure elucidation and physiological action, degradation, classification based on nitrogen heterocyclic ring, structure, stereochemistry, synthesis and biosynthesis of Alkoloids.
CO2	Acquire knowledge on Occurrence, isolation, general methods of structure determination, isoprene rule. Structure determination, stereochemistry, biosynthesis and synthesis of Terpinoids.
CO3	Acquire knowledge on Occurrence, isolation, general methods of structure determination, isoprene rule. Structure determination, stereochemistry, biosynthesis and synthesis of Steroids.
CO4	Acquire knowledge on Occurrence, isolation, general methods of structure determination, isoprene rule. Structure determination, stereochemistry, biosynthesis and synthesis of Flavonoids and Isoflavonoids.

SEMESTER - IV

ORGANIC REACTION MECHANISMS – II AND ORGANIC PHOTO CHEMISTRY

CO#	Course Outcome
CO1	Acquire knowledge on Free Radical Reactions, Quantitative relationships between
	Molecular structure and Chemical reactivity and Rearrangements.
CO2	To understand knowledge on Methodologies in asymmetric synthesis.
CO3	Acquire knowledge on Photochemical energy, Frank Condon Principle, Types of Electronic Excitation and Molecular orbital view of excitation, Jablonski Diagram, singlet and triplet states, dissipation of photochemical energy, photosensitization, quenching, quantum efficiency and quantum yield, Determination of Quantum yield and Photo Chemistry of Carbonyl Compounds.
CO4	Acquire knowledge on different types of photo chemical rearrangementreactions.

ORGANIC SPECTROSCOPY - II

CO#	Course Outcome
CO1	Acquire knowledge on Optical Rotatory Dispersion and The octant rule-application instructural studies-α- halo keto rule.
CO2	To understand Improving the PMR spectrum, Simplification of complex spectra,2D NMR spectroscopy.
CO3	To understand how to deduce the structure of unknown compound by using fallowingspectral data (UV, IR, NMR (1H&13C) and mass spectrometry).
CO4	To understand Separation Techniques and Instrumental Techniques (GC, HPLC, XRD).

MODERN ORGANIC SYNTHESIS - II

CO#	Course Outcome
CO1	Acquire knowledge on Organo Silanes and it's Synthetic applications.
CO2	To understand properties and Synthetic applications of the oxidizing reagents in the oxidation of functional groups like alkenes, alkynes, alcohols, aldehydes and ketones.
CO3	To understand different types of Catalytic reductions, properties and Synthetic applications of the Reducing reagents in the reduction of functional groups.
CO4	Acquire knowledge on Retro Synthetic Analysis.

BIO - ORGANIC SYNTHESIS - II

CO#	Course Outcome
CO1	Acquire knowledge on Biopolymers and Enzymes.
CO2	Acquire knowledge on Antimalarials & Antibiotics.
CO3	Acquire knowledge on Vitamins and Prostaglandins.
CO4	Acquire knowledge on Nucleic Acids.