# DEPARTMENT OF ZOOLOGY

# **COURSE OUTCOMES**

## SEMESTER – I

### PAPER-I ANIMAL DIVERSITY - BIOLOGY OF NON-CHORDATES

#### THEORY

| CO#        | Course Outcome                                                                       |
|------------|--------------------------------------------------------------------------------------|
| <b>CO1</b> | Classify different animals using general taxonomic rules. (K4)                       |
| CO2        | Classify Protozoa to Coelenterate with taxonomic keys. (K4)                          |
| CO3        | List out the general characters and explain evolutionary significance of Ctenophore. |
|            | (K3)                                                                                 |
| <b>CO4</b> | Classify phylum Platyhelminthes to Annelida phylum using examples from               |
|            | parasitic adaptation and vermin composting. (K4)                                     |
| CO5        | Illustrate phylum Arthropoda to Mollusca using examples and importance of insects    |
|            | and Molluscans. (K4)                                                                 |
| <b>CO6</b> | Differentiate Echinodermata to Hemichordate with suitable examples and larval        |
|            | stages in relation to the phylogeny. (K4)                                            |

| CO#        | Course Outcome                                                            |
|------------|---------------------------------------------------------------------------|
| <b>CO1</b> | Illustrate the importance of preservation of museum specimens. (K3)       |
| CO2        | Categorize animals based on special identifying characters. (K4)          |
| CO3        | Explain different organ systems through demo or virtual dissections. (K3) |
| <b>CO4</b> | Diagram a neat labeled record of identified museum specimens. (K4)        |

#### SEMESTER – II

# PAPER-II ANIMAL DIVERSITY - BIOLOGY OF NON-CHORDATES

#### THEORY

| CO#        | Course Outcome                                                               |
|------------|------------------------------------------------------------------------------|
| <b>CO1</b> | Describe general taxonomic rules on animal classification of chordates. (K2) |
| <b>CO2</b> | Classify Protochordata to Mammalian with taxonomic keys. (K4)                |
| CO3        | Illustrate Reptiles with specific structural adaptations. (K4)               |
| CO4        | Explain mammals with specific structural adaptations. (K3)                   |
| <b>CO5</b> | Illustrate the significance of dentition and evolutionary significance. (K4) |
| <b>CO6</b> | Illustrate the origin and evolutionary relationship of different phyla from  |
|            | Protochordata to Mammalian. (K4)                                             |

| <b>CO</b> # | Course Outcome                                                                    |
|-------------|-----------------------------------------------------------------------------------|
| <b>CO1</b>  | Categorize taxidermy and other methods of preservation of chordates. (K4)         |
| CO2         | Evaluate chordates based on special identifying characters. (K5)                  |
| CO3         | Demonstrate internal Anatomy of animals through demo or virtual dissections, thus |
|             | directing the student for "Empathy towards the fellow living beings". (K3)        |
| <b>CO4</b>  | Diagram a neat, labeled record of identified museum specimens. (K4)               |

## SEMESTER – III

## PAPER-III CELL BIOLOGY, GENETICS, MOLECULAR BIOLOY AND EVOLUTION

#### THEORY

| <b>CO</b> # | Course Outcome                                                                        |
|-------------|---------------------------------------------------------------------------------------|
| <b>CO1</b>  | Describe the basic unit of the living organisms and differentiate the organisms       |
|             | by their cell structure. (K2)                                                         |
| CO2         | Assess the structure and function of plasma membrane and different cell organelles    |
|             | of eukaryotic cell. (K5)                                                              |
| CO3         | Demonstrate the history of origin of branch of genetics gain knowledge on heredity    |
|             | interaction of genes, various types of inheritance patterns existing in animals. (K3) |
| <b>CO4</b>  | Illustrate various aspects of genetics involved in sex-determination human            |
|             | karyotyping and mutations of chromosomes resulting in various disorder. (K3)          |
| CO5         | Explain the central dogma of molecular biology and flow of genetic information        |
|             | from DNA to proteins. (K3)                                                            |
| <b>CO6</b>  | Illustrate the principles and forces of evolution of life on earth, the process of    |
|             | evolution of new species and apply the same to develop new and advanced varieties     |
|             | of animals for the benefit of the society. (K4)                                       |

| <b>CO</b> # | Course Outcome                                                                            |
|-------------|-------------------------------------------------------------------------------------------|
| <b>CO1</b>  | Illustrate skill enhancement in the usage of laboratory microscope hands-on experience of |
|             | different phases of cell division by experimentation. (K4)                                |
| CO2         | Develop skills on human Karyo typing and identification of chromosomal disorders. (K3)    |
| CO3         | Apply the basic concept of inheritance for applied research. (K3)                         |
| CO4         | Develop familiar with phylogeny and geological history of origin & evolution of animals.  |
|             | (K3)                                                                                      |

#### SEMESTER – IV

# PAPER-IV EMBRYOLOGY, PHYSIOLOGY AND ECOLOGY

#### THEORY

| <b>CO</b> # | Course Outcome                                                                  |
|-------------|---------------------------------------------------------------------------------|
| <b>CO1</b>  | Illustrate the functions of important animal physiological systems including    |
|             | digestion, cardio respiratory and renal systems. (K4)                           |
| CO2         | Explain the muscular system and the neuro endocrine regulation of animal growth |
|             | development and metabolism with a special knowledge of hormonal control of      |
|             | human reproduction. (K3)                                                        |
| CO3         | Explain the structure classification and chemistry of bio molecules and enzymes |
|             | responsible for sustenance of life in living organisms. (K3)                    |
| CO4         | Demonstrate the basic metabolic activities pertaining to the catabolism and     |
|             | anabolism of various bio-molecules. (K3)                                        |
| CO5         | Analyze the key events in The early embryonic development starting from the     |
|             | formation of gametes up to gastrulation formation of primary germ layer. (K4)   |

| <b>CO</b> # | Course Outcome                                                                   |
|-------------|----------------------------------------------------------------------------------|
| <b>CO1</b>  | Report of an organ system with histological structure. (K3)                      |
| CO2         | Assess human health based on the information of composition of blood cells.      |
|             | (K5)                                                                             |
| CO3         | Demonstrate enzyme activity in vitro. (K3)                                       |
| CO4         | Analyze various bio-molecules of tissues by simple colorimetric methods and also |
|             | quantitative methods. (K3)                                                       |



### **PAPER-V ANIMAL BIOTECHNOLOGY**

## THEORY

| <b>CO</b> # | Course Outcome                                                                                                                                                                 |
|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>CO1</b>  | Illustrate the applications of biotechnology in the fields of industry and agriculture including animal cell-tissue culture stem cell technology and genetic engineering. (K3) |
| <b>CO2</b>  | Explain the tools and techniques of animal biotechnology. (K3)                                                                                                                 |
| <b>CO3</b>  | Demonstrate hybridoma technology and write its applications. (K3)                                                                                                              |
| CO4         | Explain reproductive technologies and transgenic animals in animal biotechnology. (K2)(K3)                                                                                     |
| <b>CO5</b>  | Explain fermentation and its types. (K3)                                                                                                                                       |
| CO6         | Illustrate monoculture in fishes and polyploidy in fishes. (K3)                                                                                                                |

| CO#        | Course Outcome                                                                                   |
|------------|--------------------------------------------------------------------------------------------------|
| <b>CO1</b> | Demonstrate basic laboratory skills necessary for Biotechnology research. (K3)                   |
| CO2        | Demonstrate the application of the lab techniques for taking up research in higher studies. (K3) |
| <b>CO3</b> | Estimate DNA Quantification using agarose gel electrophoresis. (K4)                              |
| CO4        | Report DNA Amplification by PCR technique. (K3)                                                  |



#### **PAPER-VI ANIMAL HUSBANDARY**

#### THEORY

| <b>CO</b> # | Course Outcome                                                                  |
|-------------|---------------------------------------------------------------------------------|
| <b>CO1</b>  | Demonstrate the Principles of Poultry housing and management of Chicks, growers |
|             | and layers. (K3)                                                                |
| <b>CO2</b>  | Explain different stages of layers and broilers. (K3)                           |
| CO3         | Explain about selection care and handling of hatching eggs. (K3)                |
| <b>CO4</b>  | Classify Indian cattle breeds, exotic breeds and Indian buffalo breeds. (K4)    |
| CO5         | Explain about housing of dairy animals, conventional dairy barn and weaning of  |
|             | calf. (K2)                                                                      |
| <b>CO6</b>  | Illustrate care and management of calf, heifer, milk animal, dry and pregnant   |
|             | animals, bulls and bullocks. (K3)                                               |

| CO#        | Course Outcome                                                                |
|------------|-------------------------------------------------------------------------------|
| <b>CO1</b> | Demonstrate various breeds of layers and broilers (Photographs). (K3)         |
| CO2        | Analyze disease causing organisms in Poultry birds. (K4)                      |
| <b>CO3</b> | Demonstrate the anatomy of the poultry bird by way of dissecting a bird. (K3) |
| <b>CO4</b> | Demonstrate various activities carried out in a dairy farm. (K3)              |



## **PAPER-VI IMMUNOLOGY**

#### THEORY

| <b>CO</b> # | Course Outcome                                                                 |
|-------------|--------------------------------------------------------------------------------|
| <b>CO1</b>  | Classify the organs of immune system types of immunity cells and organs of     |
|             | immunity. (K4)                                                                 |
| CO2         | Demonstrate Immunological response to how it is triggered (antigens) and       |
|             | regulated (antibodies). (K3)                                                   |
| CO3         | Distinguish between exogenous and endogenous pathways of antigen presentation. |
|             | (K5)                                                                           |
| CO4         | Illustrate cell cultures- primary and secondary. (K3)                          |
| CO5         | Explain various types of hypersensitivity and vaccines. (K3)                   |
| <b>CO6</b>  | Illustrate about monoclonal antibodies. (K4)                                   |

| CO#        | Course Outcome                                                                     |
|------------|------------------------------------------------------------------------------------|
| <b>CO1</b> | Demonstrate immunological techniques vis-a-vis theory taught in the classroom.     |
|            | (K4)                                                                               |
| CO2        | Interpret the theoretical and practical knowledge of immunity with the outer world |
|            | for the development of a healthier life. (K3)                                      |
| <b>CO3</b> | Demonstrate lymphoid organs. (K4)                                                  |
| <b>CO4</b> | Categorize different blood groups. (K4)                                            |



# **PAPER- CLUSTER - I PRINCIPLES OF AQUACULTURE**

#### THEORY

| <b>CO</b> # | Course Outcome                                                                     |
|-------------|------------------------------------------------------------------------------------|
| <b>CO1</b>  | Explain the concept of Principles of Aquaculture. (K4)                             |
| CO2         | Distinguish the concept of monoculture, composite culture, mono sex culture and    |
|             | integrated fish farming. (K3)                                                      |
| CO3         | Explain ponds, raceways, cages, pens, rafts and water re-circulating system. (K5)  |
| CO4         | Illustrate the design and construction of fish and shrimp farms. (K3)              |
| CO5         | Explain about the management of carp culture ponds. (K3)                           |
| <b>CO6</b>  | Demonstrate the Culture of shrimp, pearl oysters, sea weeds and ornamental fishes. |
|             | (K4)                                                                               |

| CO#        | Course Outcome                                                                                                         |
|------------|------------------------------------------------------------------------------------------------------------------------|
| <b>CO1</b> | Distinguish between cultivable and edible fishes. (K5)                                                                 |
| CO2        | Differentiate Aquarium fishes from other fishes. (K4)                                                                  |
| CO3        | Demonstrate fish and shrimp diseases. (K3)                                                                             |
| CO4        | Estimate water quality parameters such as temperature, P <sup>H</sup> , O <sub>2</sub> , CO <sub>2</sub> etc., in pond |
|            | water sample. (K4)                                                                                                     |



# PAPER- CLUSTER - II AQUACULTURE MANAGEMENT

## THEORY

| <b>CO</b> # | Course Outcome                                                                                                                                           |
|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>CO1</b>  | Compare bundh breeding and induced breeding of carp. (K2)                                                                                                |
| CO2         | Estimate water quality parameters and soil characteristics for fish and shrimp culture. (K4)                                                             |
| CO3         | Distinguish different types of foods and feeds such as supplementary feeds, principal foods and artificial diets, feed additives and preservatives. (K4) |
| <b>CO4</b>  | Evaluate principles of disease diagnosis and health management. (K5)                                                                                     |
| <b>CO5</b>  | Analyze fish marketing methods and fishery training in India. (K4)                                                                                       |
| <b>CO6</b>  | Explain genetic improvement of fish stocks, gynogenesis androgenic, transgenic fish and cryo preservation of gametes. (K3)                               |

| CO#        | Course Outcome                                                                     |
|------------|------------------------------------------------------------------------------------|
| <b>CO1</b> | Demonstrate live food Organisms. (K3)                                              |
| CO2        | Estimate the composition of aquaculture feeds- Proteins, Carbohydrates and Lipids. |
|            | (K4)                                                                               |
| CO3        | Analyze artificial and natural gut food intake. (K4)                               |
| CO4        | Prepare flow charts, excersize the identification of hazards and procedures in     |
|            | processing of fish. (K3)                                                           |



## **PAPER- CLUSTER - III POST HARVEST TECHNOLOGY**

#### THEORY

| <b>CO</b> # | Course Outcome                                                                        |
|-------------|---------------------------------------------------------------------------------------|
| <b>CO1</b>  | Explain the concept of fish preservation, cleaning , lowering of temperature, raising |
|             | of temperature and use of salt. (K3)                                                  |
| <b>CO2</b>  | Illustrate the methods of fish preservation. (K4)                                     |
| CO3         | Explain processing of fish and preservation of fish and fish by products. (K3)        |
| CO4         | Demonstrate sea weed products such as agar, algil and carrageen. (K3)                 |
| CO5         | Interpret quality control of fish and fishery products. (K3)                          |
| <b>CO6</b>  | Explain about sea food quality assurance and systems and maintain national and        |
|             | international standards. (K3)                                                         |

| CO#        | Course Outcome                                                             |
|------------|----------------------------------------------------------------------------|
| <b>CO1</b> | Report the fish farms project after visiting. (K3)                         |
| CO2        | Report the project of a feed manufacturing unit after visiting. (K3)       |
| CO3        | Report the project of a shrimp hatchery / shrimp farm after visiting. (K3) |
| CO4        | Report the project of shrimp processing unit after visiting. (K3)          |