Academic Year: 2023-2024

Semester: Semester-I,

Paper No: Paper-1, Course-I ESSENTIALS AND APPLICATIONS OF MATHEMATICAL, PHYSICAL AND CHEMICAL SCIENCES Name of the Faculty: Ch. Sujitha & P. Sahithi

Month	Gullabug	Additional	CURRICULAR ACTIVITY		CO-CURRICULAR ACTIVITY		
MOIIII	Synabus	inputs	Activity	Hours allotted	Activity	Hours allotted	
Aug- 2023	Unit III: ESSENTIALS OF CHEMISTRY: Definition and Scope of Chemistry - Importance of Chemistry in daily life - Branches of chemistry and significance.		Teaching	8	Assignment	1	
Sep- 2023	PERIODIC TABLE: Significance, Electronic Configuration, Periodic properties like Atomic size and Ionization potential and their trend. Types of chemical changes - Classification of matter.		Teaching	8	Assignment	1	
Oct- 2023	BIOMOLECULES: Classification & Functions of Carbohydrates, Proteins, Fats & Vitamins.		Teaching	8	Assignment	1	
Nov- 2023	Unit IV: APPLICATIONS OF MATHS, PHY. & CHEMISTRY: Application of Chemistry in Industry and Technology: Chemical Manufacturing, Pharmaceuticals and Drug Discovery, Materials Science, Food and Beverage Industry.		Teaching	8	Assignment	1	

Academic Year:2023-2024Semester:Semester-IPaper No:Paper-II, Course-2 Advances of Mathematical, Physical and Chemical SciencesName of the Faculty:Ch. Sujitha & P. Sahithi

Month	Syllabus	Additional	CURRICULA	R ACTIVITY CO-CURRICUL		LAR ACTIVITY	
WIOIIUI	Synabus	inputs	Activity	Hours allotted	Activity	Hours allotted	
Aug- 2023	UNIT III: ADVANCES IN CHEMISTRY: Computer aided drug design and delivery, nano sensors, Chemical Biology.		Teaching	8	Assignment	1	
Sep- 2023	Impact of chemical pollutants on ecosystems and human health, Dye removal - Catalysis method		Teaching	8	Assignment	1	
Oct- 2023	UNIT IV: ADVANCED APPLICATIONS OF MATHEMATICS, PHYSICS & CHEMISTRY: Solid waste management, Environmental remediation- Green Technology, Water treatment.		Teaching	8	Assignment	1	
Nov- 2023	Computer aided drug design and delivery, nano sensors, Chemical Biology.		Teaching	8	Assignment	1	

Academic Year:2023-2024Semester:Semester-III,Paper No:Paper-IIIName of the Faculty:Ch. Udaya Bhasakara Rao, D. Suresh

		Additional	CURRIC ACTIV	ULAR TTY	CO-CURRICULAR ACTIVITY	
Month	Syllabus	inputs	Activity	Hours allotted	Activity	Hours allotted
Jul & Aug- 2023	Chemistry of Halogenated Hydrocarbons: Alkyl Halides: Methods of preparation and properties, nucleophilic substitution reactions– SN_1 and SN_2 mechanisms with stereo chemical aspects. Aryl Halides: Preparation and properties, nucleophilic aromatic substitution; Relative reactivity of alkyl, allyl, benzyl, vinyl and aryl halides towards nucleophilic substitution reactions.		Teaching	8	Assignment Quiz	1
Sep- 2023	 Alcohols & Phenols: Alcohols: preparation and properties, Bouvet Blanc Reduction; Oxidation Of Diols by Per iodic acid and lead Tetraacetate, Pinacol- Pinacolone Rearrangement; Phenols: Preparation And Properties; Acidity of phenols, Reimer–Tiemann and Kolbe's– Schmidt Reactions, Fries and Claisen Rearrangement with mechanism; Carbonyl Compounds: Structure, reactivity, preparation and properties; Nucleophilic Addition, Nucleophilic Addition- elimination reactions with ammonia derivatives Mechanisms of Aldol and Benzoin Condensation, Claisan-Schmidt, Perkin, Cannizzaro and Wittig reaction, Beckmann Haloform Reaction And Baeyer Villiger oxidation, oxidations and reductions (Clemmensen, wolf –kishner, with LiAlH4 &NaBH4). 		Teaching	16	Assignment	1
Oct- 2023	Active Methylene Compounds: Ethyl acetoacetate: keto-enol tautomerism, preparation by Claisen condensation,					

	Synthetic applications: Preparation of a) monocarboxylic acids. b) Dicarboxylic acids.c) Reaction with urea Diethyl malonate: preparation from acetic acid. Synthetic applications: Preparation of a) monocarboxylic acids (propionic acid and n-butyric acid). b) Dicarboxylic acids (succinic acid and adipic acid) c) α , β -unsaturated carboxylic acids (crotonic acid). d) Reaction with urea. Carboxylic Acids and their Derivatives : General methods of preparation, physical properties and reactions of monocarboxylic acids, effect of substituent acidic strength. Preparation And Reactions Of Acid Chlorides, anhydrides, esters and amides; Claisen Condensation, Reformatsky reactions and Curtius Rearrangement Reactions involving H, OH and COOH groups- salt formation, anhydride formation, acid chloride formation, amide formation and esterification (mechanism). Degradation of carboxylic acids by Huns- Diecker reaction, decarboxylation by Schimdt reaction, Arndt- Eistert synthesis, halogenation by Hell- Volhard- Zelinsky reaction.	Teaching	16	Assignment	1
Nov- 2023	SPECTROSCOPY: Spectrophotometry: General features of absorption - Beer- Lambert's law and its limitations, transmittance, Absorbance, and molar absorptivity. Single and double beam spectrophotometers. Application of Beer-Lambert law for quantitative analysis of 1. Chromium in K ₂ Cr ₂ O ₇ 2. Manganese in Manganous sulphate Vibrational Spectroscopy: Classical Equation of Vibration, computation of force constant, Harmonic and anharmonic oscillator, Morse Potential curve, vibrational degrees of freedom for polyatomic molecules, Modes of vibrations in diatomic and polyatomic molecules. Selection rules for vibrational transitions, Fundamental Frequencies, overtones and hot bands. Functional group and fingerprint region.	Teaching	16	Assignment	1

	Electronic spectroscopy: Interaction of electromagnetic radiation with molecules and types of molecular spectra. Energy levels of molecular orbitals (σ , π , n). Selection rules for electronic spectra. Types of electronic transitions in molecules, effect of conjugation. Concept of chromophore and auxochrome. bathochromic and hypsochromic shifts.				
Dec- 2023	Nuclear Magnetic Resonance (NMR) spectroscopy: Principles of nuclear magnetic resonance, equivalent and non- equivalent protons, position of signals. Chemical shift, NMR splitting of signals - spin-spin coupling, coupling constants. Applications of NMR with suitable examples - ethyl bromide, ethanol, acetaldehyde, 1,1,2-tribromo ethane, ethyl acetate, toluene and acetophenone. Application of Spectroscopy to Simple Organic Molecules Application of visible, ultraviolet and Infrared spectroscopy in organic molecules. Application of electronic spectroscopy and Woodward rules for calculating λ max of conjugated dienes and α,β – unsaturated compounds. Infrared radiation and types of molecular vibrations, IR spectra of alkanes, alkenes and simple alcohols (inter and intramolecular hydrogen bonding), aldehydes, ketones, carboxylic acids and their derivatives (effect of substitution on >C=O stretching absorptions).	Teaching	8	Assignment	1

Academic Year:	2023-2024
Semester:	Semester-V
Paper No:	Paper-VI Environmental Chemistry
Name of the Faculty:	Dr.SB Ronald, Ch.Srinivasa Rao

MONTH	SVLLADUS	ADDITIONAL	CURRICULA	R ACTIVITY	CO-CURRICULAR ACTIVITY	
MONTH	STLLABUS	INPUTS	ACTIVITY	HOURS ALLOTTED	ACTIVITY	HOURS ALLOTTED
Sep- 2023	UNIT-I: INTRODUCTION: Environment Definition – Concept of Environmental chemistry- Scope and importance of environmental chemistry in nowadays – Nomenclature of environmental chemistry – Pollution, Pollutant, Contaminant, Receptor, Sink, Pathway of a pollutant, Threshold limit value (TLV) Segments of environment– Composition and Structure of Atmosphere with temperature profile.		Teaching	10	Assignment Guest lecture	1
Oct- 2023	Natural resources–Renewable Resources–Solar and biomass energy and Nonrenewable resources – Thermal power and atomic energy – Reactions of atmospheric oxygen and Hydrological cycle. UNIT-II: Air Pollution Definition – Sources of air pollution – Classification of air pollutants – Acid rain – Photochemical smog – Global warming-Green house effect – Formation and depletion of ozone layer– Bhopal gas disaster – Controlling methods of air pollution.		Teaching	16	Assignment Student seminars	1

Nov- 2023	 Unit III: Chemical Toxicology Toxic chemicals in the environment – effects of toxic chemicals – cyanide and its toxic effects-pesticides and its biochemical effects – toxicity of lead, mercury, arsenic and cadmium. Solid waste management UNIT-IV: Water pollution Unique physical and chemical properties of water – Classification of water pollutants – Dissolved oxygen – BOD, COD, Hardness of water – Methods to convert temporary hard water into soft water. Methods to convert permanent hard water into soft water treatment- Purification of waste water. 	Teaching	16	Assignment	1
Dec- 2023	 UNIT-V: Ecosystem: Concepts-structure-Functions and types of ecosystem- Abiotic and biotic components – Energy flow and Energy dynamics of ecosystem- Food chains – Food web- Tropic levels-Biogeochemical cycles (carbon, nitrogen and phosphorus) Biodiversity Definition – level and types of biodiversity – concept- significance – magnitude and distribution of biodiversity-trends-bio geographical classification of India-biodiversity at national, global and regional level. Necessity of protecting the biodiversity. 	Teaching	16	Assignment Student seminars	1

Academic Year:2023-2024Semester:Semester-VPaper No:Paper-VIIGreen Chemistry & NanotechnologyName of the Faculty:Dr.B. Ananda Kumar, Ch.RVR Prasad

Month	Syllabus	Additional	ACTIVITY		ACTIVITY	
WOITUI	Synabus	inputs	Activity	Hours allotted	Activity	Hours allotted
Sep- 2023	 UNIT-I Green Chemistry: Part- I Introduction-Definition of green Chemistry, Need for green chemistry, Goals of Green chemistry Basic principles of green chemistry. Green synthesis-Evaluation of the type of the reaction i) Rearrangements (100% atom economic), ii) Addition reaction (100% atom economic). Organic reactions by Sonication method: apparatus required and examples of sonochemical reactions (Heck, Hunds dicker and Wittig reactions). 		Teaching	10	Assignment Guest lecture	1
Oct- 2023	 UNIT- II Green Chemistry: Part- II Selection of solvent: i) Aqueous phase reactions ii) Reactions in ionic liquids, Heck reaction, Suzuki reactions, epoxidation.iii) Solid supported synthesis A) Supercritical CO2: Preparation, properties and applications, (decaffeination, drycleaning) B) Green energy and sustainability. 		Teaching	16	Assignment Student seminars	1

Nov- 2023	 UNIT-III Microwave and Ultrasound assisted green synthesis: Apparatus required, examples of MAOS (synthesis of fused anthroquinones, Leukart reductive amination of ketones) - Advantages and disadvantages of MAOS. Aldolcondensation –Cannizzaro reaction- Diels-Alder reactions-Strecker's synthesis UNIT-IV: Green catalysis and Green synthesis: Heterogeneous catalysis, use of zeolites, silica, alumina, supported catalysis - bio catalysis:Enzymes, microbes Phase transfer catalysis (micellar /surfactant) 1. Green synthesis of the following compounds: adipic acid, catechol, disodium menudo acetate(alternative Strecker's synthesis) Microwave assisted reaction in water –Hoffmann elimination – methyl benzoate to benzoic acid –oxidation of toluene and alcohols–microwave assisted reactions in organic solvents. Diels-Alder reactions and decarboxylation reaction. 3.Ultrasound assisted reactions–sonochemical Simmons–Smith reaction (ultrasonic 	Teaching	16	Assignment	1
Dec- 2023	UNIT – V: Nanotechnology and Material science <u>Nanotechnology:</u> Basic concepts of Nano science and Nanotechnology, Synthetic techniques of nanomaterials -Bottom-up approach and Top down approaches. Classification, properties and application of Nanomaterials. <u>Material science:</u> Super conductivity-transition temperature, properties and applications of superconductors, Types of super conductors-difference between type-I and type-II super conductors, Meissner effect, magnetic levitation, Composite materials-particle reinforced composites and fibre reinforced composites.	Teaching	16	Assignment Student seminars	1

Academic Year: 2023-2024 Semester: Semester-II Paper No: Major COURSE-III: GENERAL & INORGANIC CHEMISTRY Name of the Faculty: Dr. B. Ananda Kumar, Ch Udaya Bhaskar Rao

Month	Syllabus	Additional	CURRIC ACTIV	CURRICULAR ACTIVITY		CO-CURRICULAR ACTIVITY	
WOnth	o y nuo uo	inputs	Activity	Hours allotted	Activity	Hours allotted	
MAR-2024	Unit I: Atomic Structure and Periodic table Electronic configuration: Bohr theory, duel nature of electrons, Heisenberg uncertainty principle, the Schrodinger equation, significance of wave functions, normalization of wave function, radial and angular wave functions, Pauli's exclusion principle, Hund's rule, sequence of energy levels (Aufbau principle). Periodicity: periodic law and arrangement of elements in the periodic table, IUPAC nomenclature and group number, horizontal, vertical, and diagonal relationships in the periodic table. General properties of atoms: size of atoms and ions- atomic radii, ionic radii, covalent radii; trend in ionic radii, ionization potential, electron affinity; electronegativity - Pauling, Mulliken-Jaffe, Allred-Rochow definitions; oxidation states and variable valency; isoelectronic relationship; inert- pair effect.		Teaching	10	Assignment	1	
	UNIT 2: Ionic bond Properties of ionic compounds, factors favoring the formation of ionic compounds- ionization potential, electron affinity, and electronegativity. Lattice energy: definition, factors affecting lattice energy, Born-Haber cycle-enthalpy of formation of ionic compound and stability. Stability of ionic compounds in terms of Δ Hf and Uo. Solubility and thermal stability of ionic compounds. Covalent character in ionic compounds- polarization and Fajan's rules; effects of polarization-solubility,		Teaching	16	Assignment	1	

APR- 2024	 melting points, and thermal stability of typical ionic compounds. <u>UNIT 3: Acids and Bases</u> Theories of acids and bases: Arrhenius theory, Bronsted-Lowry theory, Lewis theory, the solvent system, Nonaqueous solvents: classification-protonic and aprotic solvents, liquid ammonia as solvent-solutions of alkali and alkaline earth metals in ammonia. Types of chemical reactions: acid-base, oxidation-reduction, calculation of oxidation number. Definition of pH, pKa, pKb. Types of salts, Salt hydrolysis. Pearson's concept, HSAB principle & its importance, bonding in Hard-Hard and Soft-Soft combinations. 			Student seminars	1
MAY- 2024	UNIT 4: The Covalent Bond Valance Bond theory-arrangement of electrons in molecules, hybridization of atomic orbitals and geometry of molecules- BeCl ₂ , BF ₃ , CH ₄ , PCl ₅ , SF ₆ –VSEPR model-effect of bonding and nonbonding electrons on the structure of molecules, effect of electronegativity, isoelectronic principle, illustration of structures by VESPR model-NH ₃ , H ₂ O, SF ₄ , ICl^{-4} , ICl^{-2} , XeF ₄ , XeF ₆ Molecular orbital theory- LCAO method, construction of M.O. diagrams for Homo-nuclear and Hetero-nuclear diatomic molecules (N ₂ , O ₂ , CO and NO)	Teaching	16	Assignment	1
JUN- 2024	UNIT 5: Metallic and Weak Bonds The Metallic bond: metallic properties, free electron theory, Valence Bond Theory, band theory of metals. Explanation of conductors, semiconductors and insulators. Weak bonds: hydrogen bonding-intra- and intermolecular hydrogen bonding, influence on the physical properties of molecules, comparison of hydrogen bond strength and properties of hydrogen bonded N, O and F compounds; associated molecules-ethanol and acetic acid; Vanderwaals forces, ion dipole-dipole interactions.	Teaching	16	Assignment Student seminars	1

Academic Year:2023-2024Semester:Semester-IIPaper No:Major COURSE-IV: INORGANIC CHEMISTRY-IName of the Faculty:Dr, SB Ronald, Ch.RVR Prasad

Г

Month	Syllebus	Additional	Additional ACTIVITY		CO-CURRICULAR ACTIVITY	
WOIIII	Synabus	inputs	Activity	Hours allotted	Activity	Hours allotted
MAR- 2024	<u>UNIT –I Chemistry of p-block elements–I</u> Group 13: Preparation & structure of Diborane, Borazine and (BN)x Group14: Preparation, classification and uses of silicones and Silanes. Group 15: Preparation & structure of Phosphonitrilic Chloride P ₃ N ₃ C ₁₆		Teaching	16	Assignment	1
APR- 2024	<u>Unit II Chemistry of p-block elements–II</u> Group 16: Classification of Oxides, structures of oxides and Oxoacids of Sulphur Group 17: Preparation and Structures of Interhalogen compounds. Pseudohalogens, <u>Unit – III Radioactivity</u> Definition, Isotopes, n/p ratio, binding energy, types of radioactivity, Soddy-Fajan's displacement law, Law of Radioactivity, Radioactive decay series, Nuclear Reactions-		Teaching	16	Assignment Student	1

MAY- 2024	<u>UNIT-IV: Chemistry of d-block elements</u> Characteristics of d-block elements with special reference to electronic configuration, variable valence, colour, magnetic properties, catalytic properties and ability to form complexes. Stability of various oxidation states of 3d series-Latimer diagrams.	Teaching	16	Assignment	1
JUN- 2024	<u>UNIT-V: Chemistry of f-block elements</u> Chemistry of lanthanides - electronic configuration, oxidation states, lanthanide contraction, consequences of lanthanide contraction, colour, and magnetic properties. Separation of lanthanides by ion exchange method. Chemistry of actinides - electronic configuration, oxidation states, actinide contraction, comparison of lanthanides and actinides.	Teaching	16	Assignment Student seminars	1

Academic Year:2023-2024Semester:Semester-IIPaper No:Minor COURSE-III: GENERAL & INORGANIC CHEMISTRYName of the Faculty:C h.RVR Prasad, Ch. Sujitha

	onth Syllabus		CURRICULAR ACTIVITY		CO-CURRICULAR ACTIVITY	
Month	un Synabus	inputs	Activity	Hours allotted	Activity	Hours allotted
MAR- 2024	Unit I: Atomic Structure and Periodic table Electronic configuration: Bohr theory, duel nature of electrons, Heisenberg uncertainty principle, the Schrodinger equation, significance of wave functions, normalization of wave function, radial and angular wave functions, Pauli's exclusion principle, Hund's rule, sequence of energy levels (Aufbau principle). Periodicity: periodic law and arrangement of elements in the periodic table, IUPAC nomenclature and group number, horizontal, vertical, and diagonal relationships in the periodic table. General properties of atoms: size of atoms and ions- atomic radii, ionic radii, covalent radii; trend in ionic radii, ionization potential, electron affinity; electronegativity - Pauling, Mulliken-Jaffe, Allred-Rochow definitions; oxidation states and variable valency; isoelectronic relationship; inert- pair effect.		Teaching	10	Assignment	1
	Properties of ionic compounds, factors favoring the formation of ionic compounds- ionization potential, electron affinity, and electronegativity. Lattice energy: definition, factors affecting lattice energy, Born-Haber cycle-enthalpy of formation of ionic compound and stability. Stability of ionic compounds in terms of Δ Hf and Uo. Solubility and thermal stability of ionic compounds. Covalent character in ionic compounds-		Teaching	16	Assignment	1

	polarization and Fajan's rules; effects of polarization-solubility,				Student	
	melting points, and thermal stability of typical ionic				seminars	1
	compounds.					
	UNIT 3: Actos and Bases					
	theory I exis theory the solvent system Nonequeous solvents:					
	classification protonic and aprotic solvents, liquid appropria as					
ΔPR-	solvent-solutions of alkali and alkaline earth metals in					
2024	ammonia Types of chemical reactions: acid-base oxidation-					
2024	reduction calculation of oxidation number. Definition of pH					
	pKa, pKb. Types of salts. Salt hydrolysis. Pearson's concept.					
	HSAB principle & its importance, bonding in Hard-Hard and					
	Soft-Soft combinations.					
	UNIT 4: The Covalent Bond					
	Valance Bond theory-arrangement of electrons in molecules,					
	hybridization of atomic orbitals and geometry of molecules-					
	BeCl ₂ , BF ₃ , CH ₄ , PCl ₅ , SF ₆ –VSEPR model-effect of bonding					
MAY-	and nonbonding electrons on the structure of molecules, effect		Teaching	g 16	Assignment	1
2024	of electronegativity, isoelectronic principle, illustration of					1
	structures by VESPR model-NH ₃ , H ₂ O, SF ₄ , ICl^{-4} , ICl^{-2} , XeF ₄ ,					
	XeF ₆ Molecular orbital theory- LCAO method, construction of					
	M.O. diagrams for Homo-nuclear and Hetero-nuclear diatomic					
	molecules (N_2 , O_2 , CO and NO)					
	UNIT 5: Metallic and Weak Bonds.					
	The Metallic bond: metallic properties, free electron theory,					
	Valence Bond Theory, band theory of metals. Explanation of					
H DJ	conductors, semiconductors and insulators.				Assignment	
JUN-	Weak bonds: hydrogen bonding-intra- and intermolecular		Teaching	16	0	1
2024	hydrogen bonding, influence on the physical properties of		reaching			
	molecules, comparison of hydrogen bond strength and					
	properties of nydrogen bonded N, O and F compounds;				Student	
	forces ion dipole dipole interactions				seminars	1

Academic Year:	2023-2024	
Semester:	Semester-IV	
Paper No:	Paper-IV	
Name of the Faculty:	Ch. Srinivasa Rao, Dr.D. Suresh	

		Additional inputs	Additional ACT		ULAR ITY	CO-CURRICULAR ACTIVITY	
Month	Syllabus		Activity	Hours allotted	Activity	Hours allotted	
MAR- 2024	Organ metallic Compounds: Definition and classification of organometallic compounds on the basis of bond type, Metal Carbonyls:18-electron rule, General methods of preparation of mono and binuclear carbonyls of 3d series. P-acceptor behaviour of carbon monoxide. Carbohydrates: Classification and their biological importance, Monosaccharides: Constitution and absolute configuration glucose and fructose (open chain and cyclic structure), epimers and anomers, mutarotation, osazone formation from glucose and fructose Interconversions of Aldohexose to Ketohexose [(+) Glucose to (-) Fructose] and Ketohexose to Aldohexose (Fructose to Glucose) Kiliani- Fischer synthesis and Ruff degradation		Teaching	10	Assignment	1	
APR- 2024	Amino acids and proteins: Introduction: Definition of Amino acids, classification of Amino acids into alpha, beta, and gamma amino acids. Essential and Non-essential amino acids - definition and examples, classification of alpha amino acids into acidic, basic and neutral amino acids with examples. Methods of synthesis: General methods of synthesis of alpha amino acids (specific examples - Glycine, Alanine, valine and leucine) by following methods: a) from halogenated carboxylic acid b) Gabriel Phthalimide synthesis c) strecker's synthesis. Physical properties: Zwitter ion structure - salt like character - solubility melting points amphoteric character definition of		Teaching	16	Assignment Student seminars	1	

	isoelectric point.				
	Chemical properties: General reactions due to amino and				
	carboxyl groups - lactams from gamma and delta amino acids				
	by heating- peptide bond (amide linkage).				
	Heterocyclic Compounds: Introduction and definition: Simple				
	five membered ring compounds with one hetero atom Ex.				
	Furan. Thiophene and pyrrole - Aromatic character –				
	Preparation from 1, 4, -dicarbonyl compounds, Paul-Knorr				
	synthesis. Properties: Acidic character of pyrrole - electrophilic				
	substitution at 2 or 5 position, Halogenation, Nitration and				
	Sulphonation under mild conditions - Diels Alder reaction in				
	furan. Pyridine – Structure - Basicity - Aromaticity-				
	Comparison with pyrrole- one method of preparation and				
	properties - Reactivity towards Nucleophilic substitution				
	reaction				
	(ORGANIC & PHYSICAL CHEMISTRY)				
	Nitro hydrocarbons				
	Nomenclature and classification-nitro hydrocarbons, structure -				
	Tautomerism of nitroalkanes leading to aci and keto form,				
	Preparation of Nitroalkanes, reactivity -halogenation, reaction				
	with HONO (Nitrous acid), Nef reaction and Mannich reaction				
	leading to Micheal addition and reduction.				
	Amines:Introduction, classification, chirality in amines				
MAY-	(pyramidal inversion), importance and general methods of		16	Assignment	1
2024	preparation.Properties : Physical properties, Basicity of amines:	Teaching	10	Assignment	1
	Effect of substituent, solvent and steric effects. Distinction				
	between Primary, secondary and tertiary amines using				
	Hinsberg's Method And Nitrous Acid. Discussion of the				
	following reactions with emphasis on the mechanistic pathway:				
	Gabriel Phthalimide synthesis, Hoffmann- Bromamide				
	Reaction, Carbylamine Reaction, Mannich reaction,				
	Hoffmann's exhaustive methylation, Hofmann-elimination				
	reaction and Cope elimination.				

JUN-2024	Photochemistry: Difference between thermal and photochemical processes, Laws of photochemistry- Grothus- Draper's law and Stark-Einstein's law of photochemical equivalence, Quantum yield- Photochemical reaction mechanism- hydrogen- chlorine and hydrogen- bromine reaction. Qualitative description of fluorescence, phosphorescence, Photosensitized reactions. Thermodynamics: The first law of thermodynamics-statement, definition of internal energy and enthalpy, Heat capacities and their relationship, Joule-Thomson effect- coefficient, Calculation of work for the expansion of perfect gas under isothermal and adiabatic conditions for reversible processes, State function. Temperature dependence of enthalpy of formation- Kirchoffs equation, Second law of thermodynamics Different Statements of the law, Carnot cycle and its efficiency, Carnot theorem, Concept of entropy, entropy as a state function, entropy changes in reversible and irreversible processes. Entropy changes in spontaneous and equilibrium processes. Third law of thermodynamics, Nernst heat theorem,	Teaching	16	Assignment Student seminars	1
	processes. Entropy changes in spontaneous and equilibrium processes. Third law of thermodynamics, Nernst heat theorem, Spontaneous and non- spontaneous processes, Helmholtz and Gibbs energies-Criteria for spontaneity.				

Academic Year:	2023-2024
Semester:	Semester-IV
Paper No:	Paper-V
Name of the Faculty:	Dr SB Ronald & Dr B.Ananda Kumar

	Month Syllabus	Additional	ACTIVITY		CO-CURRICULAR ACTIVITY	
Month	Syllabus	Synabus inputs	Activity	Hours allotted	Activity	Hours allotted
MAR- 2024	 Coordination Chemistry: IUPAC nomenclature of coordination compounds, Structural and stereoisomerism in complexes with coordination numbers 4 and 6. Valence Bond Theory (VBT): Inner and outer orbital complexes. Limitations of VBT, Crystal Filed Theory:- Splitting of d-orbitals in Octahedral, Tetrahedral and Square-planar complexes, Crystal field stabilization energy (CFSE), Crystal field effects for weak and strong fields. Factors affecting the magnitude of crystal field splitting energy, Spectrochemical series, Comparison of CFSE for Octahedral and Tetrahedral complexes, Jahn-Teller distortion, Inorganic Reaction Mechanism: Introduction to inorganic reaction mechanisms. Concept of reaction pathways, transition state, intermediate and activated complex. Labile and inert complexes, ligand substitution reactions -SN1 and SN2, Substitution reactions in square planar complexes, Trans-effect, theories of trans effect and its applications 		Teaching	10	Assignment	1
	 Stability of metal complexes: Thermodynamic stability and kinetic stability, factors affecting the stability of metal complexes, chelate effect, determination of composition of complex by Job's method and mole ratio method. Bioinorganic Chemistry: Metal ions present in biological systems, classification of elements according to their action in biological system. biological significance of Na, K, Mg, Ca, Fe 		Teaching	16	Assignment	1

	and Cl. Excess and deficiency of some trace metals. Toxicity			Student	1
APR-	of metal ions (Hg, Pb, Cd and As), reasons for toxicity, Use of			seminars	
2024	chelating agents in medicine, Cis-platin as an anti-cancer drug.				
	Metalloporphyrins Structure and functions of hemoglobin				
	and Chlorophyll.				
	(PHYSICAL CHEMISTRY)				
	Phase rule: Concept of phase, components, degrees of				
	Ireedom. Inermodynamic derivation of Globs phase rule.				
	Phase diagram of one component system - water system, Study				
	of Phase diagrams of Simple eutectic systems 1) PD-Ag system,				
	desirventsation of lead II) NaCI-water system, Congruent and				
MAY-	success having congruent and incongruent malting point		16	Accignment	1
2024	freezing mixtures	Teaching	10	Assignment	T
	Flactrochemistry: Specific conductance equivalent				
	conductance and molar conductance. Definition and effect of				
	dilution Cell constant Strong and weak electrolytes				
	Kohlrausch's law and its applications Definition of transport				
	number, determination of transport number by Hittorf's				
	method.				
	Debye-Huckel-Onsager's equation for strong electrolytes				
	(elementary treatment only), Application of conductivity				
	measurements- conduct metric titrations. Electrochemical Cells-				
	Single electrode. potential, Types of electrodes with examples:				
	Metal- metal ion, Gas electrode, Inert electrode, Redox				
H INI	electrode, Metal-metal insoluble salt- salt anion. Determination				
2024	of EMF of a cell, Nernst equation, Applications of EMF	Teaching	16	Assignment	1
2024	measurements - Potentiometric titrations. Fuel cells- Basic				
	concepts, examples and applications				
	Chemical Kinetics: The concept of reaction rates. Effect of				
	temperature, pressure, catalyst and other factors on reaction				
	rates. Order and molecularity of a reaction, Derivation of			Student	
	integrated rate equations for zero, first and second order			seminars	1

reactions (both for equal and unequal concentrations of		
reactants). Half-life of a reaction. General methods for		
determination of order of a reaction. Concept of activation		
energy and its calculation from Arrhenius equation. Theories of		
Reaction Rates: Collision theory and Activated Complex		
theory of bimolecular reactions. Comparison of the two		
theories (qualitative treatment only).Enzyme catalysis-		
Specificity, factors affecting enzyme catalysis.		