Paper Code: 3101 Regd. No
SRI Y.N.COLLEGE (AUTONOMOUS)—NARSAPUR, W.G.Dt.
(Affiliated to Adikavi Nannaya University)
II B.Sc., Degree Examinations, Oct/Nov 2016

(At the end of 3rd Semester)

Part-II

(For 2015-18 batch)
MATHEMATICS

Paper-II A

(Abstract Algebra (Group Theory))

Date: 01.11.2016 FN

Duration: 3hrs

Max Marks:75

PART - I

Answer any FIVE questions, each question carries FIVE marks.

 $5 \times 5 = 25M$

If $G = Q - \{1\}$ and * is defined on G as a * b = a + b - ab then show that (G, *) is an abelian group.

- 2. Prove that a non empty complex H of a group G is a subgroup of G if and only if $a, b \in H \Rightarrow ab^{-1} \in H$.
- 3. Prove that a subgroup H of a group G is normal if and only if $xHx^{-1} = H \forall x \in G$.
- 4. Prove that the intersection of any two normal subgroups of a group is a normal subgroup.
- 5. If f is a homomorphism from a group G into a group G' then prove that Kerf is a normal subgroup of G.
- 6. Let G, G' be two groups with identity elements e, e' respectively. If $f: G \to G^l$ is a homomorphism then prove that $(1)f(e) = e^1$, $(2)f(a^{-1}) = [f(a)]^{-1}$.
- 7. Write down the product (1 3 2) (5 6 7) (2 6 1) (4 5) as disjoint cycles.
- 8. Show that $G = \{1, -1, i, -i\}$ the set of all fourth roots of unity is a cyclic group.

PART - II

SECTION - A

Answer any \underline{FIVE} questions. Choosing at least \underline{TWO} questions from each section. Each question carries 10 marks.

 $5 \times 10 = 50M$

- 9. Prove that in a group G for a,b,x,y \in G the equation ax = b and ya = b have unique solutions.
- 10. Prove that the order of every element of a finite group is finite and is less than or equal to order of a group.
- 11. Let H, K be any two subgroups of a group G then prove that HK is a subgroup of G if and only if HK = KH.
- 12. State and prove Legranges theorem for cosets.
- Prove that subgroup H of a group G is a normal subgroup of G if and only if each left coset of H in G is a right coset of H in G.

SECTION - B

- 14. State and prove fundamental theorem of homomorphism for groups.
- 15. Prove that the necessary and sufficient condition for a homomorphism f of a group G onto a group G' with Kernel K to be an isomorphism of G' into G' is that $K = \{e\}$.
- 16. If f = (12345876) g = (41567328) are cyclic permutations then show that $(fg)^{-1} = g^{-1}f^{-1}$.
- 17. If p is a prime number then prove that every group of order p is a cyclic group.
- 18. Prove that the order of a cyclic group is equal to the order of its generators.

Paper Code: 3101

Regd. No

SRI Y.N.COLLEGE (AUTONOMOUS)-NARSAPUR, W.G.Dt.

(Affiliated to Adikavi Nannaya University)

II B.Sc., Degree Examinations, Oct/Nov 2017

(At the end of 3rd Semester)

Regular (2016 batch), Supplementary (2015 batch)

MATHEMATICS

Paper - III

(Abstract Algebra)

Date: 28.10.2017 FN

Max Marks:75

Duration: 3hrs

PART - I

Answer any FIVE questions, each question carries FIVE marks.

5x5=25M

- 1. Show that in a group G for $a,b \in G,(ab)^2 = a^2b^2 \Leftrightarrow G$ is abelian.
- 2. Prove that inverse element in a group is unique.
- A necessary and sufficient condition for a non empty subset H of a group G to be a subgroup of G is that HH⁻¹ = H.
- 4. Prove that intersection of two subgroups of a group G is a subgroup of G.
- 5. The intersection of any two normal subgroups of a group is a normal subgroup.
- 6. If $f:G \to \bar{G}$ defind f(x) = 1 if x>0 and -1 if x<0 where G=[set of non zero real numbers] and $\bar{G}=[1,-1]$ are groups prove that f is a homomorphism and find kernel
- 7. If $f = (1 \ 2 \ 3 \ 4 \ 5)$ is cyclic permutation, find its order
- 8. Show that every cyclic group is abelian.

PART - II

Answer any *FIVE* questions choosing at least TWO questions from each section.

Each Question carries 10 Marks.

5x10=50M

SECTION - A

- Show that set Q+ of all positive rational numbers from an abelian group under the composition defined by '0' such that (aob) = (a b)/3 for a,b ∈Q+
- 10. Prove that the set of nth roots of unity under multiplication form a finite group
- 11. If H and K are two subgroups of a group G, then HK is a subgroup of G iff HK =KH

- 12. State and prove lagranges theorem
- 13. A subgroup H of a group G is a normal subgroup of G iff each left coset of H in G is a right coset of H in G

SECTION - B

- 14. State and prove fundamental theorem on homomorphism of groups
- 15. The necessary and sufficient condition for a homomorphism F of a group G onto a group G^1 with Kernel K to be an isomorphism of G into G^1 is that $K=\{e\}$
- 16. State and prove Cayleys theorem.
- 17. Prove that every subgroup of a cyclic group is cyclic.
- 18. Every Isomorphic image of a cyclic group is cycle.

Paper Code: 3101

Regd. No

SRI Y.N.COLLEGE (AUTONOMOUS)-NARSAPUR, W.G.Dt.

(Affiliated to Adikavi Nannaya University)

II B.Sc., Degree Examinations, Oct/Nov 2018

(At the end of 3rd Semester)

Regular (2017 batch), Supplementary (2016 batch)
MATHEMATICS
Paper – III

(Abstract Algebra)

Date: 02.11.2018 FN Duration: 3 hrs Max Marks:75

PART-I

Answer any five questions each question carries Five marks:

5X5 = 25M

- 1. Prove that the set Z of all integers forms an abelian group with respect to the operation * defined by a * b = a + b + 2, $\forall a, b \in Z$.
- 2. If H is any subgroup of G, then prove that $H = H^{-1}$.
- 3. Prove that a subgroup H of a group G is normal $\Leftrightarrow xHx^{-1} = H$.
- 4. If M and N are two normal subgroups of a group g such that $M \cap N = \{e\}$, then prove that every element of M commutes with every element of N.
- 5. Prove that every homomorphic image of an abelian group is abelian.
- 6. Show that the mapping $f: G \to G$ such that $f(a) = a^{-1} \ \forall a \in G$ is an automorphism of a group $G \Leftrightarrow G$ is abelian.
- 7. If $f = (1\ 2\ 3\ 4\ 5\ 8\ 7\ 6), g = (4\ 1\ 5\ 6\ 7\ 3\ 2\ 8)$ are cyclic permutations, then show that $(fg)^{-1} = g^{-1}.f^{-1}$
- 8. Show that the group $(G=\{1,2,3,4,5,6\},X_7)$ is cyclic. Also write down all its generators

PART-II

Answer any five questions .choosing at least two questions from each section.

Each question carries 10 marks.

5X10 = 50M

SECTION-A

- 9. Prove that every finite semi group (G,.) satisfying the cancellation laws is a group
- 10. Define order of an element in a group G. In a group G, if $a \in G$, then show that $O(a) = O(a^{-1})$
- 11. Prove that the necessary and sufficient condition for afinite complex H of a group G to be a subgroup of G is $a, b \in H \Rightarrow ab \in H$.
- 12. State and prove Lagrange's theorem.
- 13. Prove that a subgroup H of a group G is a normal subgroup of $G \Leftrightarrow \text{each left coset of H}$ in G is a right coset of H in G.

SECTION-B

- 14. Prove that the necessary and sufficient condition for a homomorphism f of a group G onto a group G^1 with kernel K to be an isomorphism of G into G^1 is that $K = \{e\}$.
- 15. State and prove fundamental theorem of homomorphism of group G.
- 16. State and prove Cayley's theorem.
- 17. Prove that every subgroup of a cyclic group is cyclic.
- 18. Find the number of generators of cyclic groups of order 5, 6, 8, 12, 15, 60.