Paper C	ode: 6124
---------	-----------

Regd. No

SRI Y.N.COLLEGE (AUTONOMOUS)-NARSAPUR, W.G.Dt.

(Affiliated to Adikavi Nannaya University)

III B.Sc., Degree Examinations, Mar/Apr 2018

(At the end of 6th Semester)

Regular (2015-18 batch)

MATHEMATICS

Paper-VIII (CE-I)

(Advanced Numerical Analysis)

Date: 29.03.2018 FN Max Marks:75
Duration: 3 hrs

PART - I

Answer any FIVE of the following questions. Each question carries Five marks 5×5=25M

1. By the method of least squares, fit a straight line to the following data

x: 1 2 3 4 5 y: 14 27 40 55 68

2. Find Normal equations of parabola

3. Find the minimum value of y from the following data

x: 0 2 4 6 y: 3 3 11 27

4. Evaluate $\int_0^5 \frac{dx}{4x+5}$ by using trapezoidal rule.

5. Evaluate $\int_4^{5.2} log dx$ by Weddles rule.

6. Solve the equations x+2y+z=4, 2x-3y-z=-3, 3x+y+2z=3 by Gauss Elimination.

7. Solve the system of equations x+y+z=1, x+2y+3z=6, x+3y+4z=6 by using matrin invesion method.

8. Compute y(0.2) upto 4 decimals using Euler method when $\frac{dy}{dx} = 1+y^2$ and y(0) = 0.

PART - II

Answer any FIVE questions. Choosing atleast TWO questions from each Section. Each question carries Ten marks 5×10=50M

SECTION - A

9. Fit a second degree parabola to the following data

x: 0 1 2 3 4 y: 1 5 10 22 38

10. Find the least square power function of the from $y = ax^b$

x: 1 · 2 3 4 y: 3 12 21 35

11. Using the following table compute $\frac{dy}{dx} & \frac{d^2y}{dx^2}$ at x=1

x: 1 2 3 4 5 6 y: 1 8 27 64 125 216 12. Find $f^{1}(1)$ for $f(x) = \frac{1}{1+x^{2}}$ using the following table

x: 1

1.1

1.2

1.3

1.4

y: 0.5

0.4524

0.4098

0.3717

0.3378

13. Obtain general formula for quadrature and hence derive Simpson's 1/3rd rule.

SECTION - B

- 14. Using Simpon's $3/8^{th}$ Rule evaluate $\int_0^1 \frac{1}{1+x} dx$ with h=1/6.
- 15. Solve the following equestions by Jacobi's method. 27X+6Y-Z=85, 6X+15Y+2Z=72, X+Y+54Z=110
- 16. Solve the following equatins by Gauss seidal method. 10x+2y+z=9, 2x+20y-2z=-44, -2x+3y+10z=22.
- 17. Given $\frac{dy}{dx}$ = x+y with initial conditions y(0)=1 find y(0.05) and y(0.1) Eulers modified method.
- 18. Given $\frac{dy}{dx} = y-x$ with y(0)=2 find y(0.1)& y(0.2) using Runge Kutta method of fourth order.

Paper Code: 6124

Regd. No SRI Y.N.COLLEGE (AUTONOMOUS)-NARSAPUR, W.G.Dt.

(Affiliated to Adikavi Nannaya University)

III B.Sc., Degree Examinations, Mar/Apr 2019 (At the end of 6th Semester)

Regular (2016 batch)

MATHEMATICS

Paper - VIII (CE-1)

(Advanced Numerical Analysis)

Date: 04.04.2019 FN

Duration:3hrs

Max Marks:75

PART-I

Answer any FIVE of the following. Each question carries 5 Marks. $5 \times 5 = 25 \text{ M}$

1. Fit a straight line y = a+bx and find y(6) for the following data.

1112/2017	
12	20
	12

2. Find f¹(2.5) from the following table.

x		1.5	1.9	2.5	3.2	4.3	5.9
f(x	3.	375	6.059	13.625	29.368	73.907	196.579
		<u> </u>	to New York	1 12			1

3. Using the following table, compute $\frac{dy}{dx}$ at x = 1.

X	- 1	2	3	4	5	6
y	1 ,	8	27	64	125	216

- 4. State and prove Trapezoidal Rule?
- 5. Evaluate $\int_4^{5.2} logx \, dx$ by using Weddle's rule?
- 6. Solve the system of equations 3x + y + 2z = 3, 2x 3y z = -3, x + 2y + z = 4 by using matrix inversion method.
- 7. Solve the equations 2x+y+4z=12; 8x-3y+2z=23; 4x+11y-z=33 by Gauss elimination method?
- 8. Given $\frac{dy}{dx} = 1 + xy$ with the initial condition that y = 1, when x = 0. Compute y(0.1)correct to four decimal places by using Taylor's series.

PART-II

Answer any FIVE questions. Choosing at least TWO questions from each section. Each question carries 10 Marks.

5 x 10 = 50 M

SECTION - A

9. Fit a second degree parabola to the following data by the method of Least Squares.

X	0	1	2	3	4
у	1	1.8	1.3	2.5	6.3
			T. S. A.		

10. Fit an exponential function of the type $y = ae^{bx}$ to the following data.

x	1 1 4 4 5	2	3	4	5	6
y	1.5	4.6	13.9	40.1	125.1	299.5

11. From the following table, find 'x' for which 'y' is maximum and find this value of y.

X	1.2	1.3	1.4	1.5	1.6
у	0.9320	0.9636	0.9855	0.9975	0.9996

- 12. Find the value of the integral $\int_0^1 \frac{dx}{1+x^2}$ by using Simpson's $1/3^{rd}$ and $3/8^{th}$ rule. Hence obtain the approximate value of π in each case.
- 13. Evaluate $\int_0^{\frac{\pi}{2}} \sin x \, dx$ by using Euler-Maclaurin's formula.

SECTION - B

- 14. Solve the equations 3x+2y+4z = 7; 2x+y+z = 7; x+3y+5z = 2 by LU decomposition method?
- 15. Solve the equations by Gauss-Seidel method 27x+6y-z=85, 6x+15y+2z=72, x+y+54z=110.
- 16. Given $\frac{dy}{dx} = \frac{y-x}{y+x}$ with y=1, when x=0. Find approximately the value of y for x=0.1 by Picard's method?
- 17. Using Euler's modified method, find y(0.2) for $\frac{dy}{dx} = x + |\sqrt{y}|$ with y(0) = 1.
- 18. Given $\frac{dy}{dx} = y-x$ with y(0)=2, find y(0.1) and y(0.2) correct to four decimal places by using Runge-Kutta fourth order method.

3

Paper Code: 6124

Regd. No

SRI Y.N.COLLEGE (AUTONOMOUS)-NARSAPUR, W.G.Dt.

(Affiliated to Adikavi Nannaya University)

III B.Sc., Degree Examinations, September 2020

(At the end of 6th Semester)

Regular (2017 batch), Supplementary (2016 batch)

MATHEMATICS

Paper - VIII (CE-1)

(Advanced Numerical Analysis)

Date: 18.09.2020 Duration:3hrs Max Marks:75

PART-I

Answer any FIVE questions. Each question carries FIVE marks.

 $5 \times 5 = 25M$

1. By the method of least squares, fit a stright line to the following data

X	1	2	3	4	5
у	14	27	40	55	68

2. Using the following table compute $\frac{dy}{dx}$ at x = 1.

x	1	2	3	4	5	6
у	1	8	27	64	125	216

3. Find $f^{1}(5)$ from the following table

x	1	. 2	4	8	10
f(x)	0	1	5	21	27

- 4. Evaluate $I = \int_{-3}^{3} x^4 dx$ by Trapezoidal rule with h = 1.
- 5. Evaluate $\int_{0}^{1} \frac{1}{1+x} dx$ by Boole's rule.
- 6. Solve the equations 3x + 2y + 4z = 7; 2x + y + z = 7; x + 3y + 5z = 2 by matrix inversion method.
- 7. Solve the equations x + y + z = 9, 2x + 5y + 7z = 52, 2x + y z = 0 by Cramers rule.
- 8. Solve the differential equation $\frac{dy}{dx} = x + y$ with y(0) = 1, $x \in [0,1]$ by Taylors series expansion to obtain y for x = 0.1.

PART - II

Answer any <u>FIVE</u> questions. Choosing atleast <u>TWO</u> questions from each section. Each question carries 10 marks. $5 \times 10 = 50M$

SECTION - A

9. Fit an exponential curve of the form $y = ab^*$ to the following data

X	1	2	3	4	5	6	7	8
У	1.0	1.2	1.8	2.5	3.6	4.7	6.6	9.1

10. Fit a second degree parabola to the following data.

X	0	1	2	3	4
y	1	5	10	22	38

11. Find the maximum and minimum values of the function y = f(x) from the following data.

x:	0	1	2.	3	4	5
f(x):	0	0.25	0	2.25	16	56.25

12. Evaluate $\int_{0}^{6} \frac{dx}{1+x^2}$ by Simpson's rule.

13. Use Euler-Maclaurins formula with n = 4 to estimate $\int_{0}^{1} \frac{1}{1+x^2} dx$ and hence find the approximate value of π .

SECTION - B

14. Solve the equations 2x+3y+z=9, x+2y+3z=6, 3x+y+2z=8 by factorisation method.

15. Solve by Gauss-Seidal method the equations $10x_1 + x_2 + x_3 = 12$, $2x_1 + 10x_2 + x_3 = 13$, $2x_1 + 2x_2 + 10x_3 = 14$.

16. Solve $\frac{dy}{dx} = 1 + y^2$, y(0) = 0 by Picard's method.

17. Solve $\frac{dy}{dx} = xy$ using Runge-Kutta method for x = 0.2 given that y(0) = 1 taking h = 0.2.

18. Determine the value of y when x = 0.1 given that y(0) = 1 and $\frac{dy}{dx} = x^2 + y$. by using Hodified Euler's method

Paper Code: 6124

Regd. No.

SRI Y.N.COLLEGE (AUTONOMOUS)-NARSAPUR, W.G.Dt.

(Affiliated to Adikavi Nannaya University)

III B.Sc/B.Com/B.B.A/B.A., DegreenExaminations, June 2022

(At the end of 6th Semester)

Regular (2019-22 batch), Supplementary (2018,2017,2016 batches)

MATHEMATICS

Paper - VIII (CE-1)

(Advanced Numerical Analysis)

Date: 20.06.2022 FN Duration: 3hrs Max Marks:75

PART-I

Answer any FIVE questions. Each question carries 5 marks.

5 X 5 = 25M

1. Find the least square line y = a+bx for the following data.

X	1:1	2	3	4	5
Y	14	27	40	55	68

2. Using the following table, compute $\frac{dy}{dx}$ at x=1.

X	1	2	3	4	5	6
Y	1	8	27	64	125	216

3. Find $f^{l}(2.5)$ from the following table.

•						
X	1.5	1.9	2.5	3.2	4.3	5.9
Y	3.375	6.059	13.625	29.368	73.907	196.579

- 4. Evaluate $\int_0^1 x^3 dx$ with five sub-intervals by Trapezoidal rule.
- 5. Evaluate $\int_0^1 \frac{1}{1+x^2} dx$ using Weddle's rule.
- 6. Solve the system of equations x + 2y + z = 4, 2x 3y z = -3, 3x + y + 2z = 3 by Gauss elimination method.
- 7. Solve the system of equations 5x + 2y + z = 12, x + 4y + 2z = 15, x + 2y + 5z = 20 by Gauss-Jordanmethod.
- 8. Compute y(0.2) up to 4 decimals, using Euler's method when $\frac{dy}{dx} = 1 + y^2$ and y(0) = 0.

PART-II

swer any FIVE questions. Choosing at least TWO questions from each section.

ach question carries 10 marks. $5 \times 10 = 50M$

SECTION-A

9. Fit an exponential curve of the form y = abx to the following data.

X	1	2	3	04 1	5	6	7	8
Y	1.0	1.2	1.8	2.5	3.6	4.7	6.6	9.1

10. Fit a second-degree parabola to the following data.

C	0	1	2	3	4
1	1	5	10	22	38

11. Find the maximum and minimum values of the function y = f(x) from the following data.

X	0	1	2	3	4	5
Y	0	0.25	0	2.25	16	56.25

12. State and prove general quadrature formula and hence deduce Simpson's 3/8 rule.

13. Evaluate $\int_0^{\pi/2} \sin x \, dx$ using Euler-Maclaurin's formula.

SECTION-B

14. Solve the system of equations x + 2y + 3z = 14.2x + 5y + 2z = 18.3x + y + 5z = 20 by using factorization method.

15. Solve the equations 10x + y + z = 6, x + 10y + z = 6, x + y + 10z = 6 by using Gauss Seidel method.

16. Use Picard's method to approximate y when x = 0.2 given that y = 1 when x = 0 and dy

$$\frac{dy}{dx} = x - y.$$

17. Use Runge Kutta method of fourth order to find an approximate value of y when x = 0.1 and x = 0.2 given that $\frac{dy}{dx} = x + y$, y(0) = 1.

18. Using Euler's modified method, find y(0.2) for $\frac{dy}{dx} = 2 + \sqrt{xy}$ with y(1) = 1.