					We
Paper Code: 6123	Regd. No				
GE (AUTONOMOUS)-NARSAPU	JR, V	W.G.I	Ot.	1, 1
ated to Adikavi Nannaya I		,		+	
Degree Evaminations M					

SRI Y.N.COLLEC (Affilia

III B.Sc., De

(At the end of 6th Semester)

Regular (2015-18 batch)

MATHEMATICS

Paper – VII

(Numerical Analysis)

Date: 20.03.2018 FN Max Marks:75

Duration: 3 hrs

PART - I

Answer any FIVE of the following question. Each carries FIVE marks.

- 1. Evaluate the sum $s=\sqrt{3}+\sqrt{5}+\sqrt{7}$ to four significant digits and find its absolute and relative errors.
- 2. Explain bisection method.
- 3. Find a root of the equation $x^2-3x+2=0$ by Newton Raphson's method.
- 4. Prove that a) E=e^{hD} b) $\Delta^r y_k - \nabla^r y_{k+r}$
- 5. Prove that $\Delta = \frac{1}{2}\delta^2 + \delta \left(1 + \frac{\delta^2}{4}\right)^{\frac{1}{2}}$
- 6. Derive Newton backward interpolation formula.
- 7. Construct divided difference table for the following data

10 100 294 f(x): 48 900 1210 2028

8. Using the inverse lagranges interpolation formula if $y_1=4$, $y_3=12$, $y_4=19$, $y_x=7$ then find the value of x.

PART - II

Answer any FIVE questions. Choosing atleast TWO questions from each Section. Each question carries Ten marks

SECTION - A

- 9. If $U = \frac{5xy^2}{z^3}$ then find relative maximum error in U, given that $\Delta x = \Delta y = \Delta z = 0.001 & x=y=z=1$
- 10. Explain types of errors.
- 11. Find a real root of the equation $x^3+x^2-1=0$ by iteration method.
- 12. Find a real root of the equation $f(x) = x^3-2x-5=0$ by the method of false position method.
- 13. Find a second degree polynomial passes through (0,1) (1,3) (2,7) and (3,13) find the polynomial.

SECTION - B

- 14. State and prove Newton Gregory forward interpolation formula.
- 15. Given $Y_{20} = 24$, $Y_{24} = 32$, $Y_{28} = 35$, $Y_{32} = 40$ find Y_{25} using Bessels formula.
- 16. State and prove stirlings formula.
- 17. By lagranges interpolation formula, find f(4) from the following table.

x: 0 8 y: 2

18. State and Prove Newton divided difference formula.

Paper Code: 6123

Regd. No

SRI Y.N.COLLEGE (AUTONOMOUS)-NARSAPUR, W.G.Dt.

(Affiliated to Adikavi Nannaya University)

III B.Sc., Degree Examinations, Mar/Apr 2019

(At the end of 6th Semester) Regular (2016 batch)

MATHEMATICS

Paper - VII

(Numerical Analysis)

Date: 26.03.2019 FN

Max Marks:75

Duration:3hrs

PART- I

Answer any FIVE questions. Each question carries FIVE marks.

 $5 \times 5 = 25$

- 1. If $R = \frac{4x^2y^3}{z^4}$ and errors in x, y, z be 0.001, show that the maximum relative error at x = y = z = 1 is 0.009.
- 2. Find the relative error and percentage error in $u = 6v^5 3v^4$ at $v = 1.5 \pm 0.0025$.
- 3. Using Newton-Raphson method, establish the iterative formula $x_{n+1} = \frac{1}{3} \left[2x_n + \frac{N}{x_n^2} \right]$ to calculate the cute root of N.
- 4. Find the missing term of the following data

x	1	2	3	4	5	6	7
y	2	4	8	•	32	64	128

- 5. Prove that $\sqrt{1+\delta^2 \mu^2} = 1 + \frac{1}{2}\delta^2$.
- 6. If f(0) = 1, f(1) = 0, f(2) = 5, f(3) = 22, f(4) = 57 find f(0.5).
- 7. If $f(x) = \frac{1}{x^2}$, find the divided difference f(a,b) and f(a,b,c).
- 8. By Lagrange's interpolation formula, find the form of the function given by

x	0	1	2	3	4
f(x)	3	6	11	18	27

PART-II

Answer any <u>FIVE</u> questions. Choosing at least <u>TWO</u> questions from each section carries 10 marks. $5 \times 10 = 50$

SECTION-A

- 9. Find a real root of the equation $f(x) = x^3 2x 5 = 0$ by the method of false position upto three places of decimals.
- 10. Find a real root of the equation Cosx = 3x 1, correct to three decimal places, using iteration method.

- 11. Find the real root of the equation $x \log_{10}^{x} 1.2 = 0$ by Newton-Raphson's method.
- 12. State and prove that fundamental theorem of difference calculus on finite differences.
- 13. State and prove Newton's forward interpolation formula.

SECTION - B

- 14. State and prove Gauss forward interpolation formula.
- 15. Use Stirling's formula to find y_{28} , given $y_{20} = 49225$, $y_{25} = 48316$, $y_{30} = 47236$, $y_{35} = 45926$, $y_{40} = 44306$.
- 16. Find the function f(x) in powers of x-1, given that f(0) = 8, f(1) = 11, f(4) = 68, f(5) = 123.
- 17. By Lagrange's interpolation formula, find the value of y at x = 10, given that

x 5 6 9 11 y 12 13 14 16

18. Using Newton's divided difference formula, prove that

 $f(x) = f(0) + x\Delta f(-1) + \frac{(x+1)x}{2!} \Delta^2 f(-1) + \frac{(x+1)x(x-1)}{3!} \Delta^3 f(-2) + \dots$

Paper Code: 6123

Regd. No

SRI Y.N.COLLEGE (AUTONOMOUS)-NARSAPUR, W.G.Dt.

(Affiliated to Adikavi Nannaya University)

III B.Sc.,Degree Examinations, September 2020

(At the end of 6th Semester)

Regular (2017 batch), Supplementary (2016 batch)

MATHEMATICS

Paper - VII

(Numerical Analysis)

Date: 14.09.2020 FN

Max Marks:75

Duration:3hrs

PART-I

Answer any FIVE questions, each question carries FIVE marks.

 $5 \times 5 = 25M$

If $R = \frac{4x^2y^3}{z^4}$ and errors in x, y, z are $\Delta x = \Delta y = \Delta z = 0.001$, then compute the relative

maximum error in R, when x = y = z = 1.

- If 2/3 represents approximately by 0.667 find 2.
 - i) Relative error
- ii) Percentage error
- Find the positive real root of the equation $x^3 3x^2 + 1 = 0$ using Bisection method upto 4 3. iterations.
- Find $\Delta^5 f(0)$ using following table. 4.

f(x): 3 12 81 200 100

- Prove that $\Delta = \frac{1}{2}\delta^2 + \delta\sqrt{1 + \frac{1}{4}\delta^2}$. 5.
- State and prove Stirling's formula. 6.
- If $f(x) = \frac{1}{r^2}$ then find f(a,b) and f(a,b,c). 7.
- Find 3rd divided difference of the function $f(x) = x^3 + x + 2$ for the arguments 8. x = 1, 3, 6, 11 using divided difference table.

PART-II

Answer any FIVE questions. Choosing atleast Two questions from each Section.

5x10=50M

SECTION-A

9.	Find real root of the equ	ation $x^3 + x^2 - 1 = 0$ h	ov Iterative method upto	3 decimal places
----	---------------------------	-----------------------------	--------------------------	------------------

- 10. Find real root of the equation $x^3 - 2x - 5 = 0$ by Newton-Raphson's method.
- 11. Find real root of the equation $x \log_{10} x = 1.2$ by method of Regula-False.
- 12. State and prove fundamental theorem of difference Calculus on finite differences.
- Using Newton's forward interpolation formula find value of sin 520 upto four decimals. 13.

 x^0 45 50 55 60 $\sin x^0$ 0.7071 0.7660 0.8192 0.8660

SECTION-B

- State and prove Gauss forward Interpolation formula. 14.
- Apply Bessel's formula to find f(62.5) from the following data. 15.

X 60 61 62 63 64 65 f(x)7782 7853 7924 7993 8062 8129

- State and prove Newton's divided difference formula. 16.
- Given the following data find f(x) as polynomial in powers of (x-5). 17.

0 2 3

f(x)26 58 112 466 922

By Lagranges interpolation formula find f(5) using 18.

> 1 8 10

> f(x)8 15 19 32 40

Paper Code: 6123

Regd. No

SRI Y.N.COLLEGE (AUTONOMOUS)-NARSAPUR, W.G.Dt.

(Affiliated to Adikavi Nannaya University)

III B.Sc/B.Com/B.B.A/B.A., DegreenExaminations, June 2022

(At the end of 6th Semester)

Regular (2019 batch), Supplementary (2018, 2016 batches)

MATHEMATICS

Paper - VII

(Numerical Analysis)

Date: 15.06.2021 FN Duration:3hrs

Max Marks: 75

PART-I

Answer any FIVE questions. Each question carries 5 marks.

 $5 \times 5 = 25M$

- 1. Evaluate the sum $S = \sqrt{3} + \sqrt{5} + \sqrt{7}$ to four significant digits and find its absolute and relative errors.
- 2. If $u = \frac{5xy^2}{z^3}$ then find relative maximum error in u, given that $\Delta x = \Delta y = \Delta z = 0.001$ and x = y = z = 1.
- 3. Using Newton-Raphson method, establish the iterative formula $x_{n+1} = \frac{1}{3} \left(2x_n + \frac{N}{x_n^2} \right)$ to calculate the cube root of N.
- 4. Find the missing term in the following data.

X	0	1	2	3	4
f(x)	1	3	9	?	81

5. Using Newton's forward interpolation formula, find the value of f(1.6).

X	1	1.4	1.8	2.2
у	3.49	4.82	5.96	6.5

- 6. State and prove Stirling's difference formula.
- 7. If $f(x) = \frac{1}{x}$ then find f(a,b), where f(a,b) is the first divided difference.
- 8. Find u_3 , given $u_0 = 580$, $u_1 = 556$, $u_2 = 520$, $u_4 = 385$ by Lagrange's interpolation formula.

PART-II

Answer any FIVE questions. Choosing at least TWO questions from each section.

Each question carries 10 marks. $5 \times 10 = 50M$

SECTION-A

- 9. Find a real root of the equation $x^3 2x 5 = 0$ by using Regula-falsi method.
- 10. Find a real root of the equation $x^3 + x^2 1 = 0$ by iteration method.
- 11. Find a real root of the equation $x^3 3x 5 = 0$ by using Newton-Raphson method.
- 12. State and prove fundamental theorem of difference calculus on finite differences.
- 13. State and prove Newton's backward interpolation formula.

SECTION-B

- 14. State and prove Gauss backward interpolation formula.
- 15. Use Stirling's formula to find y_{28} , given $y_{20} = 49225$, $y_{25} = 48316$, $y_{30} = 47236$, $y_{35} = 45926$, $y_{40} = 44306$.
- 16. State and prove Newton's Divided difference formula.
- 17. Using the following data find f(x) as a polynomial in powers of (x-5) by extending the table to include arguments x = 5 repeated as many times as may be necessary f(0) = 4, f(2) = 26, f(3) = 58, f(4) = 112, f(7) = 466, f(9) = 922.
- 18. State and Prove Lagrange's interpolation formula.