Regd. No

SRI Y.N.COLLEGE (AUTONOMOUS)-NARSAPUR, W.G.Dt.

(Affiliated to Adikavi Nannaya University)

I B.Sc., Degree Examinations, Mar/Apr 2017

(At the end of 2nd Semester)

(For 2016-19 batch)

Part - II

MATHAMATICS

Paper – I B

(Solid Geometry)

Date: 04.04.2017 AN Duration: 3hrs PART I Max Marks: 75

Answer Any FIVE Questions .Each Question carries FIVE Marks

 $5 \times 5 = 25M$

- 1. Find the Equation of the plane through (4, 4, 0) and perpendicular to the planes x + 2y + 2z = 5 and 3x + 3y + 2z 8 = 0.
- 2. Prove that the lines $\frac{x-1}{2} = \frac{y-2}{3} = \frac{z-3}{4}$; $\frac{x-2}{3} = \frac{y-3}{4} = \frac{z-4}{5}$ are coplanar, Also find their point of intersection.
- 3. Find the Equation of the line through the point (1,1,1) and intersecting the lines 2x-y-z-2=0=x+y+z-1; x-y-z-3=0=2x+4y-z-4.
- 4. Find the equation to the sphere through O = (0, 0, 0) and making intercepts a, b, c on the axes.
- 5. Find the pole of the plane x + 2y + 3z = 7 w.r.t the sphere $x^2 + y^{2+}z^2 2x 4y 6z + 11 = 0$.
- 6. Find the equation to the sphere through the circle $x^2 + y^2 + z^2 2x + 3y 4z + 6 = 0$, 3x 4y + 5z 15 = 0 and cutting the sphere $x^2 + y^2 + z^2 + 2x + 4y 6z + 11 = 0$ orthogonally.
- 7. Find the equation of the cone with vertex at (1, 1, 1) and whose guiding curve is $x^2 + y^2 = 4$, z = 2.
- 8. Show that the reciprocal cone of $ax^2 + by^2 + cz^2 = 0$ is the cone $\frac{x^2}{a} + \frac{y^2}{b} + \frac{z^2}{c} = 0$.

PART-II

Answer any FIVE questions choosing at least TWO questions from each section.

Each question carries 10 marks

 $5 \times 10 = 50 \text{M}$

SECTION-A

- 9. A variable plane is at a constant distance 3p from the origin and meets the axes in A, B, C. show that the locus of the centroid of the \triangle ABC is $x^{-2} + y^{-2} + z^{-2} = p^{-2}$.
- 10. Find the equations of the planes bisecting the angles between the planes 3x 2y + 6z + 2 = 0, 2x y + 2z + 2 = 0. Also point out which plane bisects the acute angle.
- 11. Find the image of the point (2, -1, 3) in the plane 3x 2y + z = 9.
- 12. Find the shortest distance between the lines $\frac{x-3}{3} = \frac{y-8}{-1} = \frac{z-3}{1}$, $\frac{x+3}{-3} = \frac{y+7}{2} = \frac{z-6}{4}$ find also the equations and the points in which the S.D meets the given lines.
- 13. Find the equations of the spheres passing through the circle $x^2 + y^2 = 4$, z = 0 and is intersected by the plane x + 2y + 2z = 0 is a circle of radius 3.

SECTION - B

- 14. If r_1 , r_2 are the radii of two orthogonal spheres, then the radius of the circle of their intersection is $\frac{r_1r_2}{\sqrt{r_1^2+r_2^2}}$.
- 15. Find the limiting points of the co axial system defined by the sphere $x^2 + y^2 + z^2 + 4x + 2y + 2z + 6 = 0 \text{ and } x^2 + y^2 + z^2 + 2x 4y 2z + 6 = 0.$
- 16. Show that is a right circular cone has sets of three mutually perpendicular generators, its semi vertical angle must be $\tan^{-1}\sqrt{2}$.
- 17. Prove that the angle between the lines of intersection of the plane x + y + z = 0 with the cone ayz + bzx + cxy = 0 is $\frac{\pi}{3}$ if $\frac{1}{a} + \frac{1}{b} + \frac{1}{c} = 0$.
- 18. Show that the general equation to a cone which touches the coordinate planes is \sqrt{ax} $\pm \sqrt{by} \pm \sqrt{cz} = 0$.

Regd. No.

SRI Y.N.COLLEGE (AUTONOMOUS)-NARSAPUR, W.G.Dt.

(Affiliated to Adikavi Nannaya University)

I B.Sc., Degree Examinations, Mar/Apr 2018

(At the end of 2nd Semester)

Regular (2017 batch), Supplementary (2016 batch)

MATHEMATICS

Paper – II

(Solid Geometry)

Max Marks: 75

Date: 29.03.2018 AN Duration: 3 hrs

PART – I

Answer any FIVE questions. Each question carries FIVE marks. $5 \times 5 = 25M$

- 1. Find the equation of the plane through (4, 4, 0) and perpendicular to the planes x + 2y + 2z = 5 and 3x + 3y + 2z - 8 = 0.
- 2. Find the equations of the line through the point (1, 1, 1) and intersecting the lines 2x-y-z-2=0=x+y+z-1, x-y-z-3=0=2x+4y-z-4
- 3. Find the distance of the point (1, -2, 3) from the plane x y + z = 5 measured parallel to the line whose d.cs. are proportional to 2, 3, -6.
- 4. Find the equation to the sphere through O = (0, 0, 0) and making intercepts a, b, c on the axes.
- 5. Find the equation of the sphere which touches the sphere $x^2 + y^2 + z^2 + 2x 6y + 1 = 0$ at the point (1, 2, -2) and passes through the origin.
- 6. Find the equation of the sphere through the circle $x^2 + y^2 + z^2 2x + 3y 4z + 6 = 0$. 3x - 4y + 5z - 15 = 0 and cutting sphere $x^2 + y^2 + z^2 + 2x + 4y - 6z + 11 = 0$ orthogonally.
- 7. Find the equation of the cone whose vertex is the origin and whose base curve is $x^2 + y^2 + z^2 + 2ux + d = 0.$
- 8. Find the equation of the conewhich touches the three coordinate planes and the planes x + 2y + 3z = 0, 2x + 3y + 4z = 0..

PART - II

Answer any FIVE questions. Choosing atleast TWO questions from each section.

Each question carries 10 marks.

5 X 10 = 50M

SECTION - A

- 9. Prove that the equation $2x^2 6y^2 12z^2 + 18yz + 2zx + xy = 0$ represents a pair of planes and find the angle between them.
- 10. Find the bisecting plane of the acute angle between the planes 3x 2y 6z + 2 = 0, -2x + y 2z 2 = 0.
- 11. Find the image of the line $\frac{x-1}{9} = \frac{y-2}{1} = \frac{z+3}{-3}$ in the plane 3x 3y + 10z 26 = 0.
- 12. Find the 4 S.D. between the lines $\frac{x-3}{3} = \frac{y-8}{-1} = \frac{z-3}{1}, \frac{x+3}{-3} = \frac{y+7}{2} = \frac{z-6}{4}$. Find also the equations and the points in which the S.D. meets the given lines.
- 13. Show that the two circles $x^2 + y^2 + z^2 y + 2z = 0$, x y + z = 2; $x^2 + y^2 + z^2 + x 3y + z 5 = 0$, 2x y + 4z 1 = 0 lie on the same sphere and find its equation.

SECTION - B

- 14. If r_1 , r_2 are the radii of two orthogonal spheres, then the radius of the circle of their intersection is $\frac{r_1r_2}{\sqrt{r_1^2+r_2^2}}$
- 15. Find the limiting points of the coaxal system defined by spheres $x^2 + y^2 + z^2 + 4x + 2y + 2z + 6 = 0$ and $x^2 + y^2 + z^2 + 2x 4y 2z + 6 = 0$
- 16. Find the angle between the lines of intersection of the plane x 3y + z = 0 and the cone $x^2 5y^2 + z^2 = 0$.
- 17. Find the equation of the right circular cone with vertex at (2, 1, -3) and whose axis is parallel to OY and whose semi vertical angel is 45°.
- 18. Find the condition that the lines of the section of the plane 1x + my + nz = 0 and the cones $ax^2 + by^2 + cz^2 = 0$ and 6yz + gzx + hxy = 0 should be concident.

Regd. No

SRI Y.N.COLLEGE (AUTONOMOUS)-NARSAPUR, W.G.Dt.

(Affiliated to Adikavi Nannaya University)

I B.Sc., Degree Examinations, Mar/Apr 2019

(At the end of 2nd Semester)

Regular (2018 batch), Supplementary (2017,2016 batches)

MATHEMATICS

Paper – II

(Solid Geometry)

Date: 04.04.2019 AN

Max Marks:75

Duration:3hr

PART-I

Answer any "Five" questions, each question carries 5Marks.

5x5 = 25M

- 1. Find the equation of the plane through the point (4, 4, 0) and perpendicular to each of the planes x+2y+2z-5=0 and 3x+3y+2z-8=0.
- 2. Find the image of the point (1, 3, 4) in the plane 2x-y+z+3=0.
- 3. Find the angle between the lines x-2y+z=0=x+y-z-3, x+2y+z-5=0=8x+12y+5z.
- 4. A sphere of radius 'K' passes through the origin and meets the axes in A,B,C. show that the centroid of the triangle ABC lies on the sphere $9(x^2+y^2+z^2) = 4K^2$.
- 5. Find the pole of the plane 10x-2y-5z-2=0. With respect to the sphere $x^2+y^2+z^2-6x+2y-3z+1=0$.
- 6. Find the plane of contact of the point (3,-1,5) with respect to the sphere $x^2+y^2+z^2-$ 2x+4y+6z-11=0.
- 7. Find the equation to the cone whose vertex is (1,1,0) and whose guiding curve is y=0, $x^2+z^2=4$.
- 8. Show that the reciprocal cone of $ax^2 + by^2 + c^2 = 0$ is the cone $\frac{x^2}{a} + \frac{y^2}{b} + \frac{z^2}{c} = 0$.

PART-II

Answer any five questions. Choosing at least two questions form each section. Each question 5x10=50Marries 10Marks.

SECTION-A

- 9. Find the equations of the bisectors of the angles between the planes 3x-2y+6z+2=0, 2x-y+2z+2=0.
- 10. A variable plane is at a constant distance 3p from the origin and meets the axes in A,B and C. show that the locus of the centroid of the triangle ABC is $x^{-2} + y^{-2} + z^{-2} = p^{-2}$
- 11. Find the image of the line $\frac{x-1}{9} = \frac{y-2}{1} = \frac{z+3}{-3}$ in the plane 3x-3y+10z-26=0.
- 12. Find the shortest distance and the equations of S.D lines between the lines $\frac{x-3}{3} = \frac{y-8}{-1} = \frac{z-3}{1}, \frac{x+3}{-3} = \frac{y+7}{2} = \frac{z-6}{4}$ find the points in which the S.D lines meets the given line.
- 13. Find the equations of the spheres passing through the circle $x^2+y^2=4$, z=0 and is intersected by the plane x+2y+2z=0 in a circle of radius 2 intersected by the plane x+2y+2z=0 in a circle of radius 3.

SECTION-B

- 14. Find the equation of the sphere which touches the plane. 3x+2y-z+2=0 at (1,-2,1) and cuts orthogonally the sphere $x^2+y^2+z^2-4x+6y+4=0$.
- 15. If r_1, r_2 are the radii of two orthogonal spheres, then show that the radius of the circle of their intersection is $\frac{r_1r_2}{\sqrt{(r_1^2+r_2^2)^2}}$
- 16. Find the enveloping cone of the sphere $x^2+y^2+z^2+2x-2y=2$ with vertex at (1,1,1)
- 17. Find the vertex of the cone $7x^2+2y^2+2z^2-10zx+10xy+26x-2y+2z-17=0$.
- 18. Find the equation to the right circular cone whose vertex is P(2,-3,5) axis PQ which makes equal with the axes and which passes through A(1,-2,3).

Regd. No

SRI Y.N.COLLEGE (AUTONOMOUS)-NARSAPUR,W.G.Dt.

(Affiliated to Adikavi Nannaya University)

I B.Sc., Degree Examinations, October 2020

(At the end of 2nd Semester)
Regular (2019 batch), Supplementary (2018 batch)

MATHEMATICS

Paper - II

(Solid Geometry)

Max Marks:75

Date: 03.11.2020 AN Duration:3hrs

> PART-I SECTION-A

Answer any FIVE questions.

 $5 \times 5 = 25 \text{ M}$

Each section carries FIVE Marks.

- 1. Find the angle between the planes 2x y + z = 0, x + y + 2z = 7.
- 2. Find K so that the lines $\frac{x-1}{-3} = \frac{y-2}{2k} = \frac{z-3}{2}$, $\frac{x-1}{3k} = \frac{y-5}{1} = \frac{z-6}{-5}$ may be perpendicular to each other.
- 3. Find the image of the point p(1,3,4) in the plane 2x y + z + 3 = 0.
- 4. A plane passing through a fixed point (a,b,c) and intersects the axes in A,B,C. Show that the centre of the sphere OABC lies on $\frac{a}{x} + \frac{b}{y} + \frac{c}{z} = 2$.
- 5. Find the equation of the sphere through the circle $x^2 + y^2 + z^2 = 9$, 2x + 3y + 4z = 5 and the point (1,2,3).
- 6. Show that the plane 2x 2y + z + 12 = 0 touches the sphere $x^2 + y^2 + z^2 2x 4y + 2z 3 = 0$ and find the point of contact.
- 7. Find the equation to the cone with vertex (5,4,3) and guiding curve $3x^2 + 2y^2 = 6$, y + z = 0.
- 8. Find the enveloping cone of the sphere $x^2 + y^2 + z^2 + 2x 2y = 2$ with vertex (1,1,1).

SECTION-A

Answer any FIVE questions.

 $5 \times 10 = 50 M$

Choose TWO questions from each section. Each section carries 10 Marks.

- 9. Find the equation of the plane through the points (2,2,1) and (9,3,6) and perpendicular to the plane 2x+6y+6z=9.
- 10.A variable plane is at a constant distance p from origin meets the axes in A,B,C. Show that the locus of the tetrahedron OABC is $x^{-2} + y^{-2} + Z^{-2} = 16p^{-2}$.
- 11. Show that the lines $\frac{x-1}{2} = \frac{y-2}{3} = \frac{z-3}{4}$, $\frac{x-2}{3} = \frac{y-3}{4} = \frac{z-4}{5}$ are coplanar. Also find the point of contact and plane containing them.
- 12. Find the Shortest distance and equation to the line of shortest distance between the lines $\frac{x-3}{3} = \frac{y-8}{-1} = \frac{z-3}{1}$, $\frac{x+3}{-5} = \frac{y+7}{2} = \frac{z-6}{4}$
- 13. Show that the four points (-8,5,2),(-5,2,2),(-7,6,6), (-4,3,6) are concyclic.

SECTION-B

- 14. Find the equation of the sphere through a circle $x^2 + y^2 + z^2 2x + 3y 4z + 6 = 0$ 3x-4y+5z-15=0 and cutting the sphere $x^2 + y^2 + z^2 + 2x + 4y - 6z + 11 = 0$ orthogonally.
- 15.If two spheres of radius r_1 and r_2 cut orthogonally , show that the radius of the common circle is $\frac{r_1r_2}{\sqrt{r_1^2+r_1^2}}$
- 16. Find the limiting points of the coaxial system defined by the spheres $x^2 + y^2 + z^2 + 3x 3y + 6 = 0$, $x^2 + y^2 + z^2 6y 6z + 6 = 0$
- 17. Show that the semi vertical angle of a right circular cone having three mutually perpendicular (i) generators is $\tan^{-1}\sqrt{2}$ and (ii) tangent planes is $\tan^{-1}\frac{1}{\sqrt{2}}$
- 18. Find the vertex of cone $7x^2 + 2y^2 + 2z^2 10zx + 10xy + 26x 2y + 2z 17 = 0$

Regd. No

SRI Y.N.COLLEGE (AUTONOMOUS)-NARSAPUR, W.G.Dt.

(Affiliated to Adikavi Nannaya University)

I B.Sc/B.Com/B.B.A/B.A., Degree Examinations, June 2022

(At the end of 2nd Semester) Supplementary (2019,2018,2017 batches)

MATHEMATICS

Paper – II

(Solid Geometry)

Date: 29.06.2022 AN Max Marks:75

Duration: 3 hrs

PART - I

Answer any FIVE Questions, each question carries FIVE marks 5×5=25M

- 1. Prove that the equation of the plane through the points (1,-2,4) and (3,-4,5) and parallel to x- axis is y+2z=6.
- 2. Find the equations of the straight line passing through the point (1,0,-1) and intersecting the lines 4x-y-13=0=3y-4z-1; y-2z+2=0=x-5.
- 3. Prove that lines $\frac{x-1}{2} = \frac{y-2}{3} = \frac{z-3}{4}$; $\frac{x-2}{3} = \frac{y-3}{4} = \frac{z-4}{5}$ are coplanar, also find their point of intersection.
- 4. Find the equation of Sphere passing through (0,0,0) (a,0,0) (0,b,0) (0,0,c)
- 5. Find the pole of the plane x+2y+3z=7 w.r.t.the sphere. $x^2+y^2+z^2-2x-4y-6z+11=0$
- 6. Find the equation of the sphere through the circle $x^2+y^2+z^2-2x+3y-4z+6=0$, 3x-4y+5z-15=0 and cutting the sphere $x^2+y^2+z^2+2x+4y-6z+11=0$. Orthogonally.
- 7. Find the equation to the cone whose vertex is (1,1,0) and whose guiding curve is y=0, $x^2+z^2=4$.
- 8. Show that the reciprocal cone of $ax^2+by^2+c^2=0$ is the cone $\frac{x^2}{a}+\frac{y^2}{b}+\frac{z^2}{c}=0$

PART - II

Answer any FIVE questions. Choosing atleast TWO questions from each section. Each question carries 10 marks.

5×10=50M

SECTION - A

9. Find the equations of the planes bisecting the angles between the planes 3x-6y+2z+5=0, 4x-12y+3z-3=0 also point out which the plane bisects the acute angle.

- 10. A variable plane is at a constant distance 3p from the origin and meets the axes in A,B,C. Show that the locus of the centroid of $\triangle ABC$ is x_1^2 $y^{-2}+z^{-2}=p^{-2}$
- 11. Find the image of the line $\frac{x-1}{2} = \frac{y-2}{3} = \frac{z-3}{4}$ in the plane x+y+z=1
- 12. Find the shortest distance and equations of the line S.D between the lines 3x-9y+5z=0=x+y-z and 6x+8y+3z-10=0=x+2y+z-3.
- 13. Find the equations of the spheres passing through the circle $x^2+y^2=4$, z=0 and is intersected by the plane x+2y+2z=0 in a circle of radius 3.

SECTION - B

- 14. Show that the two $x^2+y^2+z^2-y+2z=0$, x-y+z=2 and $x^2+y^2+z^2+x-3y+z-5=0$, 2x-y+4z-1=0 lie on the same sphere and find its equation.
- 15. If r_1, r_2 are the radii of two orthogonal spheres, then show that the radius of the circle of their intersection is $\frac{r_1 r_2}{\sqrt{(r_1^2 + r_2^2)}}$.
- 16. Prove that the angle between the lines of intersection of the plane x+y+z=0 with the cone ayz+bzx+cxy=0 is $\frac{\pi}{3}$ if $\frac{1}{a} + \frac{1}{b} + \frac{1}{c} = 0$.
- 17. Show that the equation of quadric cone which contains the three coordinate axes and the lines in which the plane x-5y-3z=0 cuts the cone $7x^2+5y^2-3z^2=0$ is yz+10zx+18xy=0
- 18. Find the equation of the right circular cone whose vertex is the origin, axis as the line x=t, y=2t, z=3t and whose semi vertical angle is 60° .