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Chapter: 1

FUZZY L-IDEALS IN L-RINGS

Dr. G.S.V.Satya Saibaba

Introduction: Ever since L.A.Zadeh introduced the notion of fuzzy sets, the theory of fuzzy
sets has attracted several researchers in the areas of Mathematics, Computer Science,
Engineering and Technology. J.A.Goguen initiated a more abstract study of fuzzy sets by
replacing the values set [0,1] by a complete lattice in an attempt to make a generalized study of
fuzzy set theory by studying L-fuzzy sets. Most of the authors considered fuzzy subsets taking
values in a complete lattice. Fuzzy algebra is now a well developed part of algebra. Partially
ordered algebraic systems play an important role in algebra. Especially I-groups, I-rings, Vector
lattices and f-rings are important concepts in algebra which present an abstract study of rings
of continuous functions. In [13], we introduced L-fuzzy sub I-groups and L-fuzzy l-ideals. In
[14], we introduced Fuzzy Convex sub I-groups and in [16], we studied L-fuzzy prime spectrum
of I-groups. In [14], we introduced L - Fuzzy sub I-rings and L - Fuzzy Convex sub I -rings. The

objective of this paper is to study L-fuzzy I- ideals of I-rings which assume values in a complete
lattice which satisfies infinite meet distributive law.

In this paper, we introduce the concepts of L-fuzzy I- ideals, L -Fuzzy prime I- ideals and L-
fuzzy maximal I- ideals, L-fuzzy o congruences of I-rings.

Throughout this paper, let R # o be an I-ring and L stands for a nontrivial complete lattice in
which the infinite meet distributive law, a A (vgess) = vges(a A s)for any Sc Land a € L holds.
Throughout the paper we consider meet irreducible elements of L only.

1. Preliminaries: Let R = (R, +, v, A) be an [-ring with o as the additive identity in R.
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Definition 1.1: A L-fuzzy subset A of R is said to be a L-fuzzy subring of R, if
i) Mx-y)2Mx) A My)
i) A(xy) 2 M(x) A AMy), for all x,y € R.

Definition 1.2 : A L-fuzzy subset A of R is said to be a L-fuzzy I- ideal of R, if
i) Ax-y) 2 A(x) A My)
i) Mxy) 2 M(x) v My), for all x,y € R.

Definition 1.3 A L-fuzzy subset A of R is said to be a L-fuzzy sub I-ring of R, if
i) Mx-y)2Mx) A My)

i) - Alxy) 2 Ax) A AMy)

iii) A(xvy)2Ax)AA(y)

iv) A(xAy)2Mx) AL (y) forall x,ye R.

Definition 1.4: A L-fuzzy sub I-ring A of R is said to be a L-fuzzy convex sub l-ring of |
X,a € G, 0 < x < a=A(x) 2 A(a)(Convexity condition).

2. L-Fuzzy I- ideals: In this section we introduce the concept of L-fuzzy I- ideals.

Definition 2.1: A L-fuzzy sub l-ring % of R is said to be a L-fuzzy l-ideal of R,
(i) ifx, a € R, |x| < |a|=>A(x) = A(a) and
(i) Alxy) = AX)VA(Y) forallx,y € R

Theorem 2.2: A L-fuzzy subset A of an I-ring R is a L-fuzzy I- ideal of R if and only if A, is ad
ideal of Rforallt € A (G) U {t e L / A(o) > t}.

Theorem 2.3: If A is a L-fuzzy I- ideal of R, then Supp(}) is a ideal of R, if Supp (M) #¢ and 1
regular. (i.e.,ifa#o0,b#o >aAb+owherea, b e L).

Theorem 2.4: If A is any - ideal of R, A # G, then the L-fuzzy subset A of R defined by

_[(sifxeA
Mx) = mn ifxeA,

where s, t € Land t < s # o, is a L-fuzzy I- ideal of R.

Theorem 2.5: The intersection of any non empty family of L-fuzzy I- ideals of R is an [l-ideal |
R.

Theorem 2.6: Let A be a L-fuzzy I- ideal of an [-ring R. Then R; = {x e G/ A(x) = A(0)}is an!
ideal of R.
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Definition 2.7: Let A be a L-fuzzy subset of an l-ring of R. Let (\) = n{p| gy, pisanyL —
fuzzy sub { = ringof R }. Then (A) is called the L-fuzzy [- ideal of R generated by . Clearly ()) is
the smallest L-fuzzy sub I-ring of R which contains A.

Theorem 2.8: Let p be a L-fuzzy subset of an [-ring R. Define v : R — L be a L-fuzzy subset as
follows: v(x) = v{AyeaR(V)IAC R, 1 < |A| < o0,x € (A)}(x € R).

Where (A) denotes [-ideal generated by A. Then v = (p), L-fuzzy I- ideal generated by p.

Theorem 2.9: Let R and R' be two [-rings. Let A and p are two L-fuzzy I- ideals of R and R
respectively. If f: R — R' be a homomorphism and onto then

(i) f(A)is a L-fuzzy I- ideal of R', provided that A has sup property,

(if) f'(w)is a L-fuzzy I- ideal of R,

(iii) (A))(0") = A (o), where o' € R'and 0 € R,

(iv) f(Gy) = Rigw,

(v) If Ais constant on Ker f, then (f(A))(f(x)) = A (x), for all x € R,

(vi) £71(R}) = Re1y)-

As an immediate consequence, if A is constant on Ker f| it is easy to observe that

f*(f(\)) = A and ii) f(f*(p)) = p.

3. L-fuzzy prime [- ideals and L - fuzzy maximal l-ideals: In this section we introduce L -
- Fuzzy prime [l-ideals and L - Fuzzy maximal [-ideals and their characterizations.

Definition 3.: Let A be a L-fuzzy subset of an I-ring R. Then A is called a L-fuzzy maximal .
ideal of R, if A is a maximal element in the set of all non constant L-fuzzy [- ideals of R unde
point wise partial ordering.

Theorem 3.2: Let A be a L-fuzzy subset of an [-ring R. Then X is a L-fuzzy maximal
l-ideal of R if and only if there exist, a maximal I- ideal M of R and maximal element o in L su

that
1,ifxeA
o, otherwise

Mx) = {

Definition 3.3: A non constant L-fuzzy convex sub l-ring of an [-ring R is called L-fuzzy pri
I- ideal if and only if for any —fuzzy I- ideals pand v, p N v c A = eitherpcAorvc A

Lemma 3.4: If A is a L-fuzzy prime I- ideal of R, then A(0) =1.

Theorem 3.5: Let A be a L -fuzzy subset of R. Then A is a L-fuzzy prime I- ideal of R if and
if there exists a pair (P,o.), where P is a prime I- ideal and a is an irreducible element of L,
that

() ={ 1,ifx€P

o, otherwise
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4. L - Fuzzy a - Congruences in l-rings:
In this section we discuss L - Fuzzy o - Congruences and one - to - one correspOnden((
between the lattice L - Fuzzy I-ideals and the lattice of L - Fuzzy congruences of R.

Definition 4.1: Let o € L — {0}. Let ¥ be a L - Fuzzy relation on R. ¥ is called,
(i) o-reflexive:if Y(x,x) = aand Y(x,y) <aVx, y€G

(ii) Symmetric : if Y(x,y) = Y(y,x), forall x, y € G.

(iii) Transitive : if Y o c ), where (§ o )(x,¥) = Ver [W (% 2)AU(Z Y)].

Definition 4.2: A L - Fuzzy relation { on R is called a L - fuzzy o - equivalence relation on R |
s (i) o - reflexive, (ii) Symmetric and (iii) Transitive.

Definition 4.3 : A L - fuzzy relation \ is compatible on R if
V(a+cb+d) =P(a,b)a(c,d), P(a-c,b-d) =P(a,b)ap(c,d)
V(avc,bvd) 2¥(a b)ap(c,d), P(anc,bad) >yP(a b)ap(c,d) Va,b,c,d €R.

Definition 4.4: A Compatible L - fuzzy o - equivalence relation on R is called a L-fuzzy a -
congruence on R.

Lemma 4.5: If Y is an L - fuzzy o - congruence on R, then (x,y) = Y(—x,—y) forallx, y €G.,
Lemma 4.6: If  is a L - fuzzy o - congruence of R, then Y(x —y,0) = y(x,y) Vx,y € G.

Lemma 4.7: Intersection of any non empty family of L - fuzzy o - congruence relations on R, it
a L -fuzzy o - congruence relation on R.

Theorem 4.8 : The set of all L- Fuzzy o - congruences C(R, a) is a complete lattice under the
relationci.e, 8,y € C(R,a),0 c Y ©0(x,y) < P(x,y),V(x,y) €R X R).

Definition 4.9: Let p be a L - fuzzy - ideal of R such that p(0) = a. A L - fuzzy relation 6, can

be defined on R by
_(nx—y)  ifx#y
Op(x,y)—{a ifx=y"

Lemma 4.10: 6, is a L - fuzzy equivalence relation on R.

Lemma 4.11: 6,,(—x,—y) = 0,(x,y),Y x,y €R.

Lemma 4.12: The L - fuzzy relation 6, is defined on R is L - Fuzzy compatible.

Theorem 4.13: 6, L - Fuzzy o. - congruence on R.
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Theorem 4.a4: Let Yy be a L - Fuzzy o - congruence relation on R. Define the [, - Fuzzy subset
Ay of R, by 2 (X) = ¥(x,0), ¥x € R. Then Yy isal - fuzzy I- ideal of R.

Now, the following theorems gives a one to one correspondence between [ - Fuzzy a -
congruences and L. - Fuzzy I- ideals of a I-ring R. We denote

La(R) = {p € L(R) p(0) = a} and C(R,a) = Set of all L. - Fuzzy « - congruences.

Theorem 4a5: If p € L, (R), then Moy = N-
Theorem 4a6: If y € C(R,a), then 0y = .

Theorem 4a7 : The mappings p = Pu:Le(R) = C(R,a) and 0 = 39:C(R,a) = L,(R) are
mutual inverses. Moreover, the mappings are lattice isomorphisms.
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