Faculty/Instructor: Mr. Vinaya Phaneendhra K

Department: Electronics

Programme: B.Sc. MPE & B.Sc. MECS

Course: CC-6E: Electronic Communication Systems Semester: V

Credits: **4** + **2** Marks: **100** + **50** Class Size: **71**

Learning Objectives of the Course:

- This Course aims to describe the concepts of Electronics in Communication.
- Basic Concept & Block Diagram of Communication System, types of Noise & Noise parameters.
- Need of modulation, AM, types of AM & their comparison, block diagram of AM Transmitter & Receiver.
- Basics of Frequency Modulation, Bandwidth Requirements of FM, Block Diagram of FM Transmitter & Receiver, Comparison of AM & FM.
- Need for Sampling & types of Pulse Communication, types of Digital Communication techniques, concepts of TDMA, FDMA and their comparison.
- Basic Block Diagram & Introduction to Fiber Optic and Satellite communications.
- Basic Concepts of Cellular Mobile Communication, Architecture of Cellular Mobile Network, techniques like GSM, CDMA, Concepts of 4G & 5G.

Course St	ructure
Unit- I (12 Lectures)	Unit- II: (12 Lectures)
Basics of Communication Systems: Introduction, Block diagram, Noise in Communication Systems, Types of Noise, Signal-to-Noise (S/N) ratio, Figure of Merit.	Transmitters: Introduction, AM Transmitters: AM Broadcast Transmitter; FM Transmitters: Directly Modulated FM Transmitter, FM Stereo Transmitter.
Modulation & Demodulation (Qualitative only): Introduction, Need for Modulation, Types, Amplitude Modulation: AM Modulating Amplifier, Amplitude Demodulation: AM Diode detector; Frequency Modulation: Varactor Diode Modulator, FM Discriminators: Ratio Detector.	Receivers: Introduction, AM Broadcast Receivers: Superheterodyne Receiver; FM Receivers: Stereo FM receiver.
	Antennas: Introduction to Antennas, Basic Principle, Types of Antennas
Unit- III: (14 Lectures)	Unit- IV: (10 Lectures)
Digital Communications: Introduction, Elements of Digital Communication System, Advantages, PCM, Sampling Theorem, Quantization, Digital Modulation Techniques: Concepts of ASK, FSK, PSK, QPSK(Qualitative only), Multiplexing: Frequency Division Multiplexing, Time Division Multiplexing, Pulse Modulation: Concepts of PAM, PWM, PPM	Satellite Comminications: Introduction to Satellite Communication, Satellite Orbits, Basic Components, Constructional features.
	Fiber Optic Communications: Basic Fiber Optic System, Advantages, Modes of propagation, Concept of Numerical Aperture, Basic Optical Communication System.
Unit- V: (12 Lectures)	
Cellular Mobile Communications: Basic Concept, Concept of Cell Sectoring and Cell Splitting, SIM number, IMEI number, Block Diagram of Mobile Communication Network, Idea of GSM, CDMA, TDMA and FDMA technologies., Block diagram of Mobile Phone handset, 4G and 5G Concepts.	

			Detaile	d Course Plan			
Unit/ Module	Торіс	Number of related Learning Objectives	Month & Week	Resources	Activity	ICT Tool/Platfor m/LMS	Number of Hours available
Unit-I	Block diagram of Communication Systems, Noise in Communication Systems, Types of Noise, Signal-to-Noise (S/N) ratio, Figure of Merit.	1	June -2019 Week-4	PPT & Virtual Lab	 Face-to-Face Mode Teaching with Interactive sessions Weekend Student Seminar 	Virtual Class Room	7
Unit-I	Introduction to Modulation & Demodulation, Need for Modulation, Types, AM Modulating Amplifier, AM Diode detector, Varactor Diode Modulator, Ratio Detector	2	July -2019 Week-1	PPT & Virtual Lab	 Face-to-Face Mode Teaching with Interactive sessions Weekend Student Seminar Assignment-1 	Virtual Class Room	7
Unit-II	Introduction to Transmitters AM Transmitters: AM Broadcast Transmitter; FM Transmitters: Directly Modulated FM Transmitter, FM Stereo Transmitter.	2	July -2019 Week-2	PPT & Virtual Lab	 Face-to-Face Mode Teaching with Interactive sessions Weekend Student Seminar 	Virtual Class Room	6
Unit-II	Introduction to Receivers, AM Broadcast Receivers: Superheterodyne Receiver; FM Receivers: Stereo FM receiver.	2	July -2019 Week-3	PPT & Virtual Lab	 Face-to-Face Mode Teaching with Interactive sessions Weekend Student Seminar 	Virtual Class Room	5

Unit-II	Introduction to Antennas, Basic Principle, Types of Antennas	1	July -2019 Week-4	PPT & Virtual Lab	 Face-to-Face Mode Teaching with Interactive sessions Weekend Student Seminar Assignment-2 	Virtual Class Room	6
Unit-III	Elements of Digital Communication System, Advantages, PCM, Sampling Theorem, Quantization, Concepts of ASK, FSK, PSK, QPSK,	1	August -2019 Week-1	PPT & Virtual Lab	 Face-to-Face Mode Teaching with Interactive sessions Weekend Student Seminar 	Virtual Class Room	8
Unit-III	Frequency Division Multiplexing, Time Division Multiplexing, Pulse Modulation: Concepts of PAM, PWM, PPM	1	August -2019 Week-2	PPT & Virtual Lab	 Face-to-Face Mode Teaching with Interactive sessions Weekend Student Seminar Assignment-3 	Virtual Class Room	5
Unit-IV	Introduction to Satellite Communication, Satellite Orbits, Basic Components, Constructional features.	1	August -2019 Week-3	PPT & Virtual Lab	 Face-to-Face Mode Teaching with Interactive sessions Weekend Student Seminar 	Virtual Class Room	7
Unit-IV	Basic Fiber Optic System, Advantages, Modes of propagation, Concept of Numerical Aperture, Basic Optical Communication System.	1	September -2019 Week-1	PPT & Virtual Lab	 Face-to-Face Mode Teaching with Interactive sessions Weekend Student Seminar Assignment-4 	Virtual Class Room	7
Unit-V	Basic Concept, Concept of Cell Sectoring and Cell Splitting, SIM number,	1	September -2019 Week-2	PPT & Virtual Lab	1. Face-to-Face Mode Teaching with Interactive sessions	Virtual Class Room	7

	IMEInumber,BlockDiagramofMobileCommunication Network,				2. Weekend Student Seminar		
Unit-V	Idea of GSM, CDMA, TDMA and FDMA technologies., Block diagram of Mobile Phone handset, 4G and 5G Concepts.	1	September -2019 Week-3	PPT & Virtual Lab	 Face-to-Face Mode Teaching with Interactive sessions Weekend Student Seminar Assignment-5 	Virtual Class Room	5

Faculty/Instructor: Mr. Vinaya Phaneendhra K

Department: Electronics

Programme: B.Sc. MPE & B.Sc. MECS

Course: CC-7E: Microcontrollers & Interfacing Semester: VI

Credits: **4** + **2** Marks: **100** + **50** Class Size: **71**

Learning Objectives of the Course:

- This Course familiarizes students to the designing and development of Microcontroller Systems.
- Here, students will learn about the 8051 programming and Interfacing.

Course Structure						
Unit- I (12 Lectures)	Unit- II: (12 Lectures)					
Introduction to Microcontrollers: Introduction to Microcontrollers,	Programming of 8051: Part-1: Introduction, Program Counter,					
Harvard vs Von Neumann Architectures, RISC & CISC	PSW Register, Stack, Adressing Modes, Instruction Set, Jump,					
Microcontrollers.	Loop & Call Instructions.					
The 8051 Microcontroller: Overview of 8051 family, Key Features of	Programming of 8051: Part-2: Programs in Assembly					
8051, Block Diagram of 8051 Microcontroller, Architecure of 8051,	Language: Addition, Multiplication, Division, Largest/Smallest &					
Pin Diagram & Memory Organization of 8051.	Ascending/Descending Order (all 8-bit data).					
Unit- III: (12 Lectures)	Unit- IV: (12 Lectures)					
I/O Port Prograqmming of 8051: Introduction, I/O Ports Pins	Serial Port Programming of 8051: Basics of Serial					
Description and their functions.	Communication, 8051 Serial Communication, 8051 Connection to					
	RS232, 8051 Serial Communication Modes.					
Timer & Counter Programming of 8051: Introduction to Timers &	Interrupts Programming of 8051: Introduction to 8051					
Counters, Timer/Counter Opeartion Modes.	Interrupts, 8051 Interrupt Structure, Timer Interrupts, Externel					
	Hardware Interrupts & Serial Communication Interrupts					
Unit- V: (12 Lectures)						
Interfacing 8051 Microcontroller to Peripherals: Part-1: ADC &	Interfacing 8051 Microcontroller to Peripherals: Part-2:					
DAC Interfacing.	LCD, LED & Stepper Motor Interfacing.					

			Detaile	d Course Plan			
Unit/ Module	Торіс	Number of related Learning Objectives	Month & Week	Resources	Activity	ICT Tool/Platfor m/LMS	Number of Hours available
Unit-I	Introduction to Microcontrollers, Harvard vs Von Neumann Architectures, RISC & CISC Microcontrollers.	1	November-2019 Week-4	PPT & Virtual Lab	 Face-to-Face Mode Teaching with Interactive sessions Weekend Student Seminar 	Virtual Class Room	6
Unit-I	Overview of 8051 family, Key Features of 8051, Block Diagram of 8051 Microcontroller, Architecure of 8051, Pin Diagram & Memory Organization of 8051.	1	December-2019 Week-1	PPT & Virtual Lab	 Face-to-Face Mode Teaching with Interactive sessions Weekend Student Seminar Assignment-1 	Virtual Class Room	6
Unit-II	Introduction, Program Counter, PSW Register, Stack, Adressing Modes, Instruction Set, Jump, Loop & Call Instructions.	2	December-2019 Week-2	PPT & Virtual Lab	 Face-to-Face Mode Teaching with Interactive sessions Weekend Student Seminar 	Virtual Class Room	6
Unit-II	Programs in Assembly Language: Addition, Multiplication, Division, Largest/Smallest & Ascending/Descending Order (all 8-bit data).	2	December-2019 Week-3	PPT & Virtual Lab	 Face-to-Face Mode Teaching with Interactive sessions Weekend Student Seminar Assignment-2 	Virtual Class Room	5
Unit-III	Introduction, I/O Ports Pins	2	December-2019	PPT & Virtual	1. Face-to-Face	Virtual Class	6

	Description and their functions.		Week-4	Lab	Mode Teaching with Interactive sessions 2. Weekend Student Seminar	Room	
Unit-III	Introduction to Timers & Counters, Timer/Counter Opeartion Modes.	2	January -2020 Week-1	PPT & Virtual Lab	 Face-to-Face Mode Teaching with Interactive sessions Weekend Student Seminar Assignment-3 	Virtual Class Room	6
Unit-IV	BasicsofSerialCommunication,8051SerialCommunication,8051ConnectiontoRS232,8051SerialCommunicationModes.	2	February -2020 Week-1	PPT & Virtual Lab	 Face-to-Face Mode Teaching with Interactive sessions Weekend Student Seminar 	Virtual Class Room	6
Unit-IV	Introduction to 8051 Interrupts, 8051 Interrupt Structure, Timer Interrupts, Externel Hardware Interrupts & Serial Communication Interrupts.	2	February -2020 Week-2	PPT & Virtual Lab	 Face-to-Face Mode Teaching with Interactive sessions Weekend Student Seminar Assignment-4 	Virtual Class Room	6
Unit-V	ADC & DAC Interfacing.	2	February -2020 Week-3	PPT & Virtual Lab	 Face-to-Face Mode Teaching with Interactive sessions Weekend Student Seminar 	Virtual Class Room	6
Unit-V	LCD, LED & Stepper Motor Interfacing	2	February -2020 Week-4	PPT & Virtual Lab	 Face-to-Face Mode Teaching with Interactive sessions Weekend Student Seminar Assignment-5 	Virtual Class Room	6

Faculty/Instructor: Mr. Vinaya Phaneendhra K

Department: Electronics

Programme: B.Sc. MPE & B.Sc. MECS

Course: CE-8EA: Embedded Systems Design Semester: VI

Credits: **4** + **2** Marks: **100** + **50** Class Size: **42**

Learning Objectives of the Course:

- To make student familiar with principles, features, classification, architectures and design issues involved in embedded system.
- The selection criteria for choosing microcontroller based on system requirement in embedded systems is also discussed.
- A balance between hardware and software exposure is maintained. Syllabus covers both assembly and C programming. Latest protocols

like SPI and TWI are also included.

Course St	ructure
Unit- I (12 Lectures)	Unit- II: (12 Lectures)
Introduction to Embedded Systems: Overview of Embedded Systems, Features, Applications, Architecture of an Embedded System, Development and Testing Tools, Introduction to Application Softwarwe & Communication Software.	 The Process of Embedded System Development: The Development Process using Waterfall Model. Advanced Communication Principles: Need for communication interfaces, Parallel Communication, Serial Communication, Wireless Communication, Serial Protocols: I²C, CAN and USB. Parallel Protocols: PCI BUS and ARM BUS. Wireless Protocols: Bluetooth, and IEEE 802.11.
Unit- III: (12 Lectures)	Unit- IV: (12 Lectures)
Embedded Systems Using AVR Microcontrollers: Introduction to AVR Microcontrollers, Features of AVR ATmega32 Microcontroller, Architecture of AVR ATmega32, General Purpose Registers (GPRs), Status Register, Memories of AVR ATmega32	DSP-based Embedded Systems: Need for DSP-based Embedded Systems, An Overview of Digital Signal Processing, Applications of DSP, Digital Signal Processor Architecture, DSP-based Embedded System Design Process.
Unit- V: (12 Lectures)	
 Robotics: Overview of Robotics, Components of Robot, Robot Locomotion-Types of robot Locomotion, Types of Robot, Use of Embedded Systems in Robotics ,Applications of Robotics. Artificial Intelligence (AI): Introduction, contributions of AI, Applications of AI, Research areas of AI. 	

			Detaile	d Course Plan			
Unit/ Module	Торіс	Number of related Learning Objectives	Month & Week	Resources	Activity	ICT Tool/Platfor m/LMS	Number of Hours available
Unit-I	Overview of Embedded Systems, Features, Applications, Architecture of an Embedded System,	2	November-2019 Week-4	PPT & Virtual Lab	 Face-to-Face Mode Teaching with Interactive sessions Weekend Student Seminar 	Virtual Class Room	7
Unit-I	Development and Testing Tools, Introduction to Application Softwarwe & Communication Software.	1	December-2019 Week-1	PPT & Virtual Lab	 Face-to-Face Mode Teaching with Interactive sessions Weekend Student Seminar Assignment-1 	Virtual Class Room	5
Unit-II	TheDevelopmentProcess using WaterfallModel.Needforcommunicationinterfaces,ParallelCommunication,SerialCommunication,	1	December-2019 Week-2	PPT & Virtual Lab	 Face-to-Face Mode Teaching with Interactive sessions Weekend Student Seminar 	Virtual Class Room	4
Unit-II	Wireless Communication, Serial Protocols: I ² C, CAN and USB. Parallel Protocols: PCI BUS and ARM BUS. Wireless Protocols: Bluetooth, and	1	December-2019 Week-3	PPT & Virtual Lab	 Face-to-Face Mode Teaching with Interactive sessions Weekend Student Seminar Assignment-2 	Virtual Class Room	7

	IEEE 802.11.						
Unit-III	Introduction to AVR Microcontrollers, Features of AVR ATmega32 Microcontroller, Architecture of AVR ATmega32	2	December-2019 Week-4	PPT & Virtual Lab	 Online Mode Teaching with Interactive sessions Weekend Student Seminar 	Virtual Class Room	7
Unit-III	General Purpose Registers (GPRs), Status Register, Memories of AVR ATmega32	3	January -2020 Week-1	PPT & Virtual Lab	 Face-to-Face Mode Teaching with Interactive sessions Weekend Student Seminar Assignment-3 	Virtual Class Room	5
Unit-IV	Need for DSP-based Embedded Systems, An Overview of Digital Signal Processing	1	February -2020 Week-1	PPT & Virtual Lab	1 Face-to-FaceMode Teaching withInteractive sessions2. WeekendStudent Seminar	Virtual Class Room	5
Unit-IV	Applications of DSP, Digital Signal Processor Architecture, DSP-based Embedded System Design Process	1	February -2020 Week-2	PPT & Virtual Lab	 Face-to-Face Mode Teaching with Interactive sessions Weekend Student Seminar Assignment-4 	Virtual Class Room	6
Unit-V	Overview of Robotics, Components of Robot, Robot Locomotion-Types of robot Locomotion, ,Types of Robot, Use of Embedded Systems in Robotics ,Applications of Robotics.	1	February -2020 Week-3	PPT & Virtual Lab	 Face-to-Face Mode Teaching with Interactive sessions Weekend Student Seminar 	Virtual Class Room	7

Unit-V	Introduction, contributions of AI, Applications of AI, Research areas of AI.	1	February -2020 Week-4	PPT & Virtual Lab	 Face-to-Face Mode Teaching with Interactive sessions Weekend Student Seminar Assignment-5 	Virtual Class Room	5

Faculty/Instructor: Mr. Vinaya Phaneendhra K

Department: Electronics

Programme: B.Sc. MPE & B.Sc. MECS

Course:**CE-8EC:** Power ElectronicsSemester: VICredits:4 + 2Marks:100 + 50Class Size: 42

Learning Objectives of the Course:

- This course deals with use of electronics for control and conversion of electrical power.
- The concept of high power devices, their construction and their applications is discussed.
- The concept of converters and inverters is important to evolve their applications for DC to AC and AC to AC conversion.
- Its importance carries good relevance with regard to the high demand of battery operated vehicles. Electric motors are discussed in detail.

Course St	ructure
Unit- I (12 Lectures)	Unit- II: (12 Lectures)
Power Electronics: Introduction, Need for Semiconductor Power	Power Devices: DIAC and TRIAC: Basic structure, working and
devices, Block diagram of Power Electronic System, Semiconductor	V-I characteristics of DIAC and TRIAC. Power MOS FET: Basic
Power Devices -Thyristor family, Classification of Power Electronic	structure, Operation modes, Switching characteristics. Power BJT:
Systems and Applications. Silicon Controlled Rectifier (SCR) or	Basic Structure, Static(Study State) Characteristics, Second break
Thyristor- Structure and basic operation, Static V-I characteristics,	down. Insulated Gate Bipolar Transistors (IGBT): Basic
Two transistor analogy, Snubber Circuit.	structure, I-V Characteristics, Switching characteristics
Unit- III: (12 Lectures)	Unit- IV: (12 Lectures)
DC Choppers: Introduction to DC choppers, Types of DC choppers,	Power Inverters: Principle of operation of single phase Inverter,
Block diagram of DC chopper and Principle of operation, Classification	Applications and Classification of Inverters, Series and Parallel
of DC Choppers, principle of operation and analysis of Step-down	Inverters – Circuit description, Operation modes with wave forms.
(Buck), Step-up (Boost), Step down-up (Buck-boost) choppers without	Single phase Half bridge and Full Bridge Inverters with R load.
isolation, Morgan Chopper	Performance parameters of Inverters, Simple Pulse Width
	Modulation(PWM) Techniques used in Inverters.
Unit- V: (12 Lectures)	
Applications of Power Electronics Devices: Need and function of UPS,	
Block diagram of UPS system, Need and function of SMPS, Block	
diagram and working of SMPS system. Static AC and DC circuit	
breakers- HVDC Transmission, Advantages. RF heating - Principle of	
Induction heating and Dielectric heating, Applications. Automatic Battery	
Charger. Simple Emergency Light System	

			Detaile	d Course Plan			
Unit/ Module	Торіс	Number of related Learning Objectives	Month & Week	Resources	Activity	ICT Tool/Platfor m/LMS	Number of Hours available
Unit-I	Introduction to Power Electronics, Need for Semiconductor Power devices, Block diagram of Power Electronic System, Semiconductor Power Devices -Thyristor family, Classification of Power Electronic Systems and Applications.	1	November-2019 Week-4	PPT & Virtual Labs	 Face-to-Face Mode Teaching with Interactive sessions Weekend Student Seminar 	Virtual Class Room	5
Unit-I	Silicon Controlled Rectifier (SCR) or Thyristor- Structure and basic operation, Static V-I characteristics, Two transistor analogy, Snubber Circuit	2	December-2019 Week-1	PPT & Virtual Lab	 Face-to-Face Mode Teaching with Interactive sessions Weekend Student Seminar Assignment-1 	Virtual Class Room	7
Unit-II	Power Devices: DIAC and TRIAC: Basic structure, working and V-I characteristics of DIAC and TRIAC. Power MOS FET: Basic structure, Operation	2	December-2019 Week-2	PPT & Virtual Lab	 Face-to-Face Mode Teaching with Interactive sessions Weekend Student Seminar 	Virtual Class Room	6

	modes, Switching characteristics						
Unit-II	Power BJT: Basic Structure, Static(StudyState)Characteristics,Secondbreak down. Insulated GateBipolar Transistors (IGBT): Basic structure,I-VCharacteristics,Switching characteristics	1	December-2019 Week-3	PPT & Virtual Lab	 Face-to-Face Mode Teaching with Interactive sessions Weekend Student Seminar Assignment-2 	Virtual Class Room	6
Unit-III	Introduction to DC choppers, Types of DC choppers, Block diagram of DC chopper and Principle of operation, Classification of DC Choppers,	3	December-2019 Week-4	PPT & Virtual Lab	 Face-to-Face Mode Teaching with Interactive sessions Weekend Student Seminar 	Virtual Class Room	7
Unit-III	Principle of operation and analysis of Step-down (Buck), Step-up (Boost), Step down-up (Buck-boost) choppers without isolation, Morgan Chopper.	3	January -2020 Week-1	PPT & Virtual Lab	 Face-to-Face Mode Teaching with Interactive sessions Weekend Student Seminar Assignment-3 	Virtual Class Room	5
Unit-IV	Principle of operation of single phase Inverter, Applications and Classification of Inverters, Series and Parallel Inverters – Circuit description, Operation modes with wave forms.	2	February -2020 Week-1	PPT & Virtual Lab	 Face-to-Face Mode Teaching with Interactive sessions Weekend Student Seminar 	Virtual Class Room	5

Unit-IV	Single phase Half bridge and Full Bridge Inverters with R load. Performance parameters of Inverters, Simple Pulse Width Modulation(PWM) Techniques used in Inverters.	1	February -2020 Week-2	PPT & Virtual Lab	 Face-to-Face Mode Teaching with Interactive sessions Weekend Student Seminar Assignment-4 	Virtual Class Room	6
Unit-V	Need and function of UPS, Block diagram of UPS system, Need and function of SMPS, Block diagram and working of SMPS system.	2	February -2020 Week-3	PPT & Virtual Lab	 Face-to-Face Mode Teaching with Interactive sessions Weekend Student Seminar 	Virtual Class Room	6
Unit-V	Static AC and DC circuitbreakers-HVDCTransmission,Advantages. RF heating -PrincipleofInductionheatingandDielectricheating,Applications.AutomaticBatteryCharger.SimpleEmergency Light System	2	February -2020 Week-4	PPT & Virtual Lab	 Face-to-Face Mode Teaching with Interactive sessions Weekend Student Seminar Assignment-5 	Virtual Class Room	6

Subject: Electronics Class: I B.Sc. Paper: I (Basic Circuit Theory) - Semester -I

Name of the Faculty: Dr.Ch Kanaka Rao Lecturer in Electronics

				Curricula	ar Activity				Co-cu	rricular Act	tivity				
S.No.	Month & week	Hours Available	Syllabus-topic	Additional Inputs Value Addition	Activity	Hours Allotted	whether Conducted	If not alternate dates	Activity	Hours Allotted					
1	June,'19 4	3	Bridge course: Units and Dimensions, R,L,C components.	PPT on basics of R,L,&C Components	Teaching	3			Assignment						
2	July,'19 1,2,3&4	11+12	Concepts of ideal as well as voltage and current sources Some definitions. Kirchhoffs current law and voltage law and their explanation. problems	PPT on Voltage sources and currents sources.	Teaching Unit test Practical	10 1 12				Student se week of th		conducted 2 nd			
3	Aug,′19 1 & 2	5+6	Method of solving AC and DC circuits by Kirchhoff's laws, Branch current method, Nodal voltage method, Star and delta transformations		Teaching practical	5 6			Assignment						
			Mid I exams for semesters I,I	III and V will	be comm	enced fro	m 20-08-20	19 - 24-08-2	019.						
4	Aug,'19 3 & 4	6+6	Superposition theorem, Maximum power transfer theorem, Thevenin's theorem and related problems	PPT on theorems	Teaching Unit test Practical.	5 1 6			Assignment						
5	Sep,'19 1,2,3&4	11+12	Nortons's theorem, Reciprocity theorem, Milliman's theorem and their proofs. Problems on the theorems. Frequency response of RC and RL circuits, their action as Low pass and High pass filters		Teaching Unit test Practical	7 2 12			Remedial classes	2 Student se week of th		conducted 2 nd			
6	Octo,'19 1&2	5+6	Passive differentiating and integrating circuits and related problems I Mid syllabus revision and solutions to problems	PPT on filters	Teaching Practical	5 6			Assignment	Prepare st	udents to MID	and Semester g old question			

Subject: Electronics Class: III B.Sc. Paper: IVA (The 8085 Microprocessor & Applications) - Semester -V

Name of the Faculty: Dr.Ch kanaka Rao, Lecturer in Electronics.

		-		Curricul	ar Activity				Co-cu	rricular Act	ivity	
S.No.	Month & week	Hours Available	Syllabus-topic	Additional Inputs Value Addition	Activity	Hours Allotted	whether Conducted	If not alternate dates	Activity	Hours Allotted	Weather Conducted	if not alternate dates
1	June,'19 2,3&4	9	<i>Introduction to Microprocessor:</i> Intel 8085 Microprocessor: Architecture of 8085 - Central Processing Unit (CPU)- Arithmetic and Logical Unit – Timing and Control Unit - Registers organization Address, Data and Control Buses - Pin configuration of 8085 and its description - Instruction cycle, Machine cycle, Fetch and Execute cycles. Timing diagrams.	PPT's on Architecture of 8085 PPT on Pin configuration	Teaching Unit test	8 1			Assignment			
2	July,'19 1,2,3&4	12+24	<i>Instruction set of Intel 8085:</i> Instruction and Data formats, Instruction types, Addressing modes –Direct addressing, Register addressing, Immediate addressing, Register Indirect addressing, and implicit addressing. Classification of Instruction set: Data transfer group, Arithmetic group, Logical group, Branch group, and Stack, I/O and Machine control group	PPT class on Addressing modes PPT on instruction set.	Teaching Unit test Practical	11 1 24			Assignment	Student se week of th		conducted 2 nd
3	Aug,′19 1 &2	6+12	Assembly Language Programming: Writing Assembly language programs (Examples of 8- and 16- bit Addition, Subtraction, Multiplication and Division - Finding the Largest and Smallest number in an 8-bit data array)		Teaching Unit test practical	5 1 12						
	•		Mid I exams for semesters I,	III and V will	be comm	enced fro	m 20-08-20	19 - 24-08-2	019.	•		
4	Aug,'19 3&4	6+12	Programming examples using Stacks and Subroutines. Debugging a program, Assembler directives - Interrupts and Interrupt structure of 8085	PPT on interrupts	Teaching Unit test Practical	5 1 12						
5	Sep,'19 1,2,3&4	12+24	<i>Interfacing peripherals:</i> Programmable Interfacing devices 8255, 8259, 8257, 8251 their important features,	PPT on all Ic's	Teaching Unit test	9 1			Assignment			

			pin diagrams and block diagrams		Practical	24				2		
									Remedial			
									Classes.			
6	Octo,'19	6+12	. Introduction to Data converters -A/D converter -		Teaching	6			Assignment			and Semester
	1&2		Successive approximation type, D/A converter-R-2R		Practical	12				END exam	s by evaluating	g old question
			ladder resistive type.							papers.		
	1	1					1	1		1		
		Ν	fid II exams for semesters I,III and V will b	e commenced	from 19-	10-2019 a	nd Follows	s Semester E	ND examin	ations.		

 Subject: Electronics
 Class: III B.Sc.
 Paper: VIIIB
 Title of the Paper: Consumer Electronics CE-3

Name of the Faculty: Dr.Ch Kanaka Rao, Lecturer in Electronics.

				Curricula	ar Activity				Co-cu	rricular Act	ivity	
S.No.	Month & week	Hours Available	Syllabus-topic	Additional Inputs Value Addition	Activity	Hours Allotted	whether Conducted	If not alternate dates	Activity	Hours Allotted	Weather Conducted	if not alternate dates
1	Nov,′19 3& 4	6+12	<u>Microwave Ovens:</u> Microwaves (range used in Mircrowave Ovens), Microwave Oven block diagram, LCE timer with Alarm, Single Chip controllers. Types of Microwaves, Wiring and Safety instructions, Care and Cleanings.	PPT on Microwave Oven	Teaching Unit test Practicals	5 1 12			Seminars	Student se week of th		e conducted 2 nd
2	Dec,'19 1,2,3&4	12+24	<u>Washing machines:</u> Electronics controller for washing machines, Block diagram and its working. Washing machine hardware and software, Types of washing machines, Fuzzy logic Washing machines.	PPT on Washing machine.You tube lecture on washing machine	Teaching Unit test Practicals	11 1 24			Quiz Guest lecture	the 2 nd we Guest lect	betition may be lek of this mont are may be cor f this month	
3	Jan 20 1	3+6	Revision of the Mid syllabus		Teaching Unit test. Practicals	2 1 6			Assignment	Assigns	simple study p Internet	rojects using
4	Jan 20 2 & 4	6+12	<u>Air conditioners and Refrigerators:</u> Air conditioning, components of Air conditioning systems, All water Air conditioning system, All Air conditioning systems, Concepts of Unitary and Central Air Conditioning Systems, Split Air Conditioners	PPT on Air conditioning system You tube lecture is arranged	Teaching Unit test Practicals	5 1 12			Seminar Projects		tudents to prej ome important	
			Mid-I exams for the	Semesters II,	IV and V	I Will be	starts from	27-01-2020	•			
5	Feb'20 1,2,3,& 4	12+24	Electronic Gadgets and Office Appliances: Barcode Scanner and Decoder, Xerox, Fax, Automated Teller machine (ATMs), Calculator, Concepts of GPRS ,GPS	PPT on FAX Machine, Xerox machine and also You tube	Teaching Unit test Practicals	9 1 24			Remedial Classes.	2		

			Navigation systems	lectures for the						
			Audio and Video systems: P A system Set Top box, Block	same						
			diagram of CATV and Dish TV Block diagrams and their					Assignment.		
			working							
6	Mar,'20	6+12	Block diagram of CCTV, concepts of LCD and LED		Teaching	6			1 1	
	1,		Displays, Block diagram of Remote control switch and		Practicals	12				
			its working				Prepare stude	ents to MID and Semester END e	xams by evaluating o	ld question papers.
			Revision of the Mid syllabus							
		Mid-II	exams for Semesters- II, IV&VI will be comm	nenced from 19	-03-2020.	Followe	d with seme	ester End exams for II,I	V&VI semesters	•

Subject: Electronics Class: II B.Sc. Paper: II (Electronic Devices and Circuits) - Semester -II

Name of the Faculty: Dr.Ch Kanaka Rao Lecturer in Electronics

				Curricula	r Activity				Co-cur	ricular A	ctivity	
S.No.	Month & week	Hours Available	Syllabus-topic	Additional Inputs Value Addition	Activity	Hours Allotted	whether Conducted	If not alternate dates	Activity	Hours Allotte d	Weather Conducted	if not alternate dates
1	NoV,'19 3 & 4 1,2	10 +6	<i>Semiconductor diodes:</i> P-type and N-type semiconductors. P-N-junction, theory, Depletion region, barrier potential working in forward &reverse bias conditions, – Junction capacitance. Diode equation (No derivation) – Effect of temperature on reverse saturation current. V-I characteristics. Zener and Avalanche break down mechanisms. Zener diode, V-I characteristics, Regulated power supply using zener diode. Varactor Diode and Tunnel diode-Principle, Working &Applications– construction, working	PPT on semiconductors. Animations of diodes working	Teaching Unit test Practical's Demonstra tions	9 1 6 1	Yes yes yes yes		Seminar		seminars will of this month	
8	Dec,'19 1,2,3& 4	19+12	Bipolar Junction Transistor (BJT): PNP and NPN transistors-current components in BJT – BJT static characteristics (Input and Output) – CE, CB configurations (cut off, active, and saturation regions), CE configuration as two port network – h-parameters – h-parameter equivalent circuit of transistor in CE configuration. The CE amplifier analysis and parameters. Biasing and load line analysis – Fixed bias and voltage divider bias arrangements. Thermal runaway, concept of stability and stability factor, factors affecting stability.	PPT on BJT's	Teaching Unit test Practicals	17 2 6			Assignment Quiz Guest lecture	in the 2nd	npetition may ¹ may be cond cture in the 3 rd	ucted.
9	Jan 20 1 & 2	10+6	<i>Field Effect Transistors (FETs):</i> Types of FETs. Construction, working and characteristics of JFETs and FET parameters. Enhancement MOSFET and Depletion MOSFETs construction, working and drain characteristics.Comparision of BJT& FET and JFET &	Animations are shown	Teaching Unit test Practicals	9 1 6	yes yes		Assignment		simple study ; Internet	

10 Jan 20 3 & 4 10+6 Photoelectric devices: Structure and operation, characteristics spectral response and applications of LDR, Photo-Voltaic cell, Solar cell, Photoconductive cell, Photo-Voltaic cell, Solar cell, Photo-Voltaic cell, Solar cell, Photoconductive cell, Photo-Voltaic cell, Solar cell, Photoconductive cell, Photo-Voltaic cell, Solar cell, Photo-Voltaic cell, Cell, Solar cell, Photo-Voltaic cell, Cell, Solar cell, Photo-Voltaic cell, Solar cell, Photo-Voltaicell, Solar cell, Photo-Vol,			MOSFET Unijunction Transistor (UJT), construction, working and characteristics. Application of UJT as a relaxation oscillator.								
11Feb'20 $1,2,3,\& 4$ 19+12Rectifiers- Half wave , full wave and bridge rectifiers, Efficiency, ripple factor and Regulation. Filters-Types of filters, Shunt capacitance filter, L-sections and π -section filters working (no derivation for ripple factor). Transistor series and shunt voltage regulators, Block diagram of regulated power supply. Three terminal IC regulators (78XX and 79XX). Principle and working of Switch Mode power supply (SMPS) (Elementary ideas)Demonstration on half and full wave rectifies14 1 Unit testRemedial 	10	10+6	characteristics spectral response and applications of LDR, Photo-Voltaic cell, Solar cell, Photoconductive cell,	conductive	Unit test	1			Seminar		
1,2,3,&4Efficiency, ripple factor and Regulation. Filters-Types of filters, Shunt capacitance filter, L-sections and π -section filters working (no derivation for ripple factor). Transistor series and shunt voltage regulators, Block 			Mid-I exams for the S	emesters II, IV	and VI W	ill be sta	arts from 27	-01-2020.	•		
1,2Old questions papers discussion and solutions to problemsUnit test1Practicals6Prepare students to MID and Semester END examples	11	19+12	Efficiency, ripple factor and Regulation. Filters-Types of filters, Shunt capacitance filter, L-sections and π -section filters working (no derivation for ripple factor). Transistor series and shunt voltage regulators, Block diagram of regulated power supply. Three terminal IC regulators (78XX and 79XX). Principle and working of	on half and full	Unit test Practicals	1 12			Classes.	3	
	12	10+6	Revision of the Mid syllabus Old questions papers discussion and solutions to		Unit test	1			Prepare stude		

Subject: Electronics Class: II B.Sc. Paper: III: (Analog Electronics and Digital Principles) - Semester -III

Name of the Faculty: Dr.Ch. Kanaka Rao Lecturer in Electronics.

				Curric	ılar Activit	y			Co-cu	ricular Act	ivity	
S.No.	Month & week	Hours Available	Syllabus-topic	Additional Inputs Value Addition	Activity	Hours Allotted	whether Conducted	If not alternate dates	Activity	Hours Allotted	Weather Conducted	if not alternate dates
1	June,'19 4	6	Operational Amplifier: (10 Hrs) Basic Op-amp, Characteristics of an ideal and practical Op-amp (IC 741), Block diagram of Op-Amp, Op-amp Parameters, Virtual Ground, differential amplifier.	ppt on op- amp block diagram	Teaching Unit test	5 1			Assignment			
2	July,'19 1,2,3&4	8+12	Inverting, Non-Inverting amplifiers, Adder, subtractor Voltage follower, Integrator, Differentiator, Voltage to current and Current to voltage converters., Logarithmic amplifier. Numerical problems.	PPT on Integrator & differentiator	Teaching Unit test Practical	7 1 12			Assignment			
3	Aug,'19 1 & 2	4+6	Mid syllabus revision and problems on Mid syllabus		Teaching Unitest practical	3 1 6						
			Mid I exams for semesters I, II	I and V will	be comm	enced fro	m 20-08-20	19 - 24-08-2	.019.			
4	Aug,'19 3&4	4+6	Applications of Op-amps: Voltage regula Comparator & Zero crossing detector, Schmitt Trigge		Teaching Practical.	4 6			Student semir month, Nover		conducted 2 nd v	week of this
5	Sep,'19 1,2,3&4	8+12	. Wien's bridge Oscillator, Triangular Wave Generato Active filters (Basics): low pass, high pass & Band pas filters. IC555 Timer: Functional block Diagram, Astable, Monostable, and Bi-stable multivibrator circuits working and their applications. Numerical problems		Teaching Unit test Practical	5 1 12			Assignment Remedial Classes.	2		
6	Oct,'19 1&2	2+3	Revision of Mid II syllabus		Teaching Practical	2 3			Assignment	*	udents to MID as by evaluatin	